Тема: Линзы Линза – прозрачное тело, ограниченное. План открытого урока по физике. Тема «Линзы. Формула тонкой линзы Характеристики простых линз

ГАПОУ «Акбулакский политехнический техникум»
План занятия по дисциплине: ФИЗИКА
№ урока 150
КРС
дата группа
Тема занятия: Линзы. Формула тонкой линзы
Цели занятия:
Образовательная –
` сформулировать понятие линзы, какие бывают линзы;
` показать основные характерные точки линзы (оптический центр, главная оптическая ось, главные фокусы линзы)
` в веси основные формулы тонкой линзы
Развивающая – способствовать развитию: мышления, пространственного воображения, коммуникативных качеств; продолжить формирование научного мировоззрения;
Воспитательная – Вырабатывать культуру умственного труда и естественно - материалистическое мировоззрение, средствами урока прививать интерес к физике как науке.
. Вид занятия:_ теоретический
Оснащение Ноутбук, проектор, электронный учебник
СОДЕРЖАНИЕ ЗАНЯТИЯ
№ Этапы занятия, вопросы занятия Формы и методы обучения Временная регламентация
1 Организационный этап:
Проверка посещаемости
Проверка готовности студентов к занятию
Проверка домашнего задания Установление готовности класса к уроку. 2-3 мин.
2 Сообщение темы занятия Слайды, классная доска 2 мин.
3 Мотивационный момент:
Обоснование необходимости изучения данной темы для эффективного освоения физики
На предыдущих уроках, мы с вами изучили как ведет себя свет в различных условиях. Изучали законы оптики. А как вы считаете, каким образом, данные законы люди используют в каких либо практических целях?
Вовлечение студентов в процесс постановки целей и задач занятия
Беседа. Анализ деятельности 2-3 мин
4 Актуализация опорных знаний:
Какую тему начали изучать?
С какими законами познакомились?
Сформулировать закон прямолинейности распространения света.
Сформулировать закон отражения света.
Сформулировать закон преломления света. Фронтальная беседа 5-7 мин.
5. Работа по теме занятия:
Что такое линза?Какие линзы бывают?
Первое упоминание о линзах можно найти в древнегреческой пьесе
Аристофана «Облака» (424 до н. э.), где с помощью выпуклого
стекла и солнечного света добывали огонь.
Линза от нем. linse, от лат.lens - чечевицаВиды линз
Основные элементы линзы
ГЛАВНАЯ ОПТИЧЕСКАЯ ОСЬ – прямая, проходящая через
центры сферических поверхностей, ограничивающих линзу.
ОПТИЧЕСКИЙ ЦЕНТР – пересечение главной оптической оси с линзой, обозначается точкой О.
Побочная оптическая ось – любая прямая, проходящая через оптический центр.
Если на собирающую линзу падает пучок лучей,
параллельных главной оптической оси, то после
преломления в линзе они собираются в одной точке F,
которая называется главным фокусом линзы.
Главных фокусов - два; они расположены на главной оптической оси на одинаковом расстоянии от оптического центра линзы по разные стороны.
Тонкая линза -линза, толщина которой мала по сравнению с радиусами кривизны ограничивающих ее сферических поверхностей.
Формулы тонкой линзы
Оптическая сила линзы
1 диоптрия – это оптическая сила линзы, фокусное расстояние которой 1 метр.
Изображения, даваемые линзой
Виды изображений
Построение изображений в собирающей линзе
Условные обозначения
F – фокус линзы
d - расстояние от предмета до линзы
f – расстояние от линзы до изображения
h – высота предмета
Н – высота изображения
Д - Оптическая сила линзы.
Единицы оптической силы – диоптрия - [дтпр]
Г – увеличение линзы
Практическая значимость изучаемой темы Работа с применением ИКТ
Электронный учебник 22-28 мин
6 Подведение итогов занятия, оценка результатов работы Беседа 2-3 мин
7. Домашнее задание 18.4. 331-334 с. 1-2 мин
8. Рефлексия: насколько достигнута цель и задачи занятия? Беседа 1-2 мин
Преподаватель: Г.А.Кривошеева



План:

    Введение
  • 1 История
  • 2 Характеристики простых линз
  • 3 Ход лучей в тонкой линзе
  • 4 Ход лучей в системе линз
  • 5 Построение изображения тонкой собирающей линзой
  • 6 Формула тонкой линзы
  • 7 Масштаб изображения
  • 8 Расчёт фокусного расстояния и оптической силы линзы
  • 9 Комбинация нескольких линз (центрированная система)
  • 10 Недостатки простой линзы
  • 11 Линзы со специальными свойствами
    • 11.1 Линзы из органических полимеров
    • 11.2 Линзы из кварца
    • 11.3 Линзы из кремния
  • 12 Применение линз
  • Примечания
    Литература

Введение

Плоско-выпуклая линза

Линза (нем. Linse , от лат. lens - чечевица) - деталь из оптически прозрачного однородного материала, ограниченная двумя полированными преломляющими поверхностями вращения, например, сферическими или плоской и сферической. В настоящее время всё чаще применяются и «асферические линзы», форма поверхности которых отличается от сферы. В качестве материала линз обычно используются оптические материалы, такие как стекло, оптическое стекло, оптически прозрачные пластмассы и другие материалы.

Линзами также называют и другие оптические приборы и явления, которые создают сходный оптический эффект, не обладая указанными внешними характеристиками. Например:

  • Плоские «линзы», изготовленные из материала с переменным коэффициентом преломления, изменяющимся в зависимости от расстояния от центра
  • линзы Френеля
  • зонная пластинка Френеля, использующая явление дифракции
  • «линзы» воздуха в атмосфере - неоднородность свойств, в частности, коэффициента преломления (проявляются в виде мерцания изображения звёзд в ночном небе).
  • Гравитационная линза - наблюдаемый на межгалактических расстояниях эффект отклонения электромагнитных волн массивными объектами.
  • Магнитная линза - устройство, использующее постоянное магнитное поле для фокусирования пучка заряженных частиц (ионов или электронов) и применяющееся в электронных и ионных микроскопах.
  • Изображение линзы, сформированное оптической системой или частью оптической системы. Используется при расчёте сложных оптических систем.

1. История

Первое упоминание о линзах можно найти в древнегреческой пьесе Аристофана «Облака» (424 до н. э.), где с помощью выпуклого стекла и солнечного света добывали огонь.

Из произведений Плиния Старшего (23 - 79) следует, что такой способ разжигания огня был известен и в Римской империи - там также описан, возможно, первый случай применения линз для коррекции зрения - известно, что Нерон смотрел гладиаторские бои через вогнутый изумруд для исправления близорукости.

Сенека (3 до н. э. - 65) описал увеличительный эффект, который даёт стеклянный шар, заполненный водой.

Арабский математик Альхазен (965-1038) написал первый значительный трактат по оптике, описывающий, как хрусталик глаза создаёт изображение на сетчатке. Линзы получили широкое использование лишь с появлением очков примерно в 1280-х годах в Италии.

Сквозь капли дождя, действующие как линзы, видны Золотые Ворота

Растение, видимое через двояковыпуклую линзу


2. Характеристики простых линз

В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих - линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например пузырёк воздуха в воде - двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием.

Для построения оптических приборов с исправленной оптической аберрацией (прежде всего - хроматической, обусловленной дисперсией света, - ахроматы и апохроматы) важны и иные свойства линз/их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления (см. иммерсионный микроскоп, иммерсионные жидкости).

Виды линз:
Собирающие :
1 - двояковыпуклая
2 - плоско-выпуклая
3 - вогнуто-выпуклая (положительный мениск)
Рассеивающие :
4 - двояковогнутая
5 - плоско-вогнутая
6 - выпукло-вогнутая (отрицательный мениск)

Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине), рассеивающей (утолщается к краям) или телескопической (фокусное расстояние равно бесконечности). Так, например линзы очков для близоруких - как правило, отрицательные мениски.

Вопреки распространённому заблуждению, оптическая сила мениска с одинаковыми радиусами не равно нулю, а положительна, и зависит от показателя преломления стекла и от толщины линзы. Мениск, центры кривизны поверхностей которого находятся в одной точке называется концентрической линзой (оптическая сила всегда отрицательна).

Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.

Основные элементы линзы: NN - оптическая ось - прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O - оптический центр - точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре).
Примечание . Ход лучей показан, как в идеализированной (тонкой) линзе, без указания на преломление на реальной границе раздела сред. Дополнительно показан несколько утрированный образ двояковыпуклой линзы

Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись, а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса, или просто фокуса .

Если на линзу будет падать свет от очень удалённого источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под бо́льшим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется фокусом F’, а расстояние от центра линзы до фокуса - фокусным расстоянием.

Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым .

Мнимый фокус рассеивающей линзы

Сказанное о фокусе на оптической оси в равной степени относится и к тем случаям, когда изображение точки находится на наклонной линии, проходящей через центр линзы под углом к оптической оси. Плоскость, перпендикулярная оптической оси, расположенная в фокусе линзы, называется фокальной плоскостью .

Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса - передний и задний . Расположены они на оптической оси по обе стороны линзы на фокусном расстоянии от главных точек линзы.


3. Ход лучей в тонкой линзе

Линза, для которой толщина принята равной нулю, в оптике называется «тонкой». Для такой линзы показывают не две главных плоскости, а одну, в которой как бы сливаются вместе передняя и задняя.

Рассмотрим построение хода луча произвольного направления в тонкой собирающей линзе. Для этого воспользуемся двумя свойствами тонкой линзы:

  • Луч, прошедший через оптический центр линзы, не меняет своего направления;
  • Параллельные лучи, проходящие через линзу, сходятся в фокальной плоскости.

Рассмотрим луч SA произвольного направления, падающий на линзу в точке A. Построим линию его распространения после преломления в линзе. Для этого построим луч OB, параллельный SA и проходящий через оптический центр O линзы. По первому свойству линзы луч OB не изменит своего направления и пересечёт фокальную плоскость в точке B. По второму свойству линзы параллельный ему луч SA после преломления должен пересечь фокальную плоскость в той же точке. Таким образом, после прохождения через линзу луч SA пойдёт по пути AB.

Аналогичным образом можно построить другие лучи, например луч SPQ.

Обозначим расстояние SO от линзы до источника света через u, расстояние OD от линзы до точки фокусировки лучей через v, фокусное расстояние OF через f. Выведем формулу, связывающую эти величины.

Рассмотрим две пары подобных треугольников: 1) SOA и OFB; 2) DOA и DFB. Запишем пропорции

Разделив первую пропорцию на вторую, получим

После деления обоих частей выражения на v и перегруппировки членов, приходим к окончательной формуле

где - фокусное расстояние тонкой линзы.


4. Ход лучей в системе линз

Ход лучей в системе линз строится теми же методами, что и для одиночной линзы.

Рассмотрим систему из двух линз, одна из которых имеет фокусное расстояние OF, а вторая O 2 F 2 . Строим путь SAB для первой линзы и продолжаем отрезок AB до вхождения во вторую линзу в точке C.

Из точки O 2 строим луч O 2 E, параллельный AB. При пересечении с фокальной плоскостью второй линзы этот луч даст точку E. Согласно второму свойству тонкой линзы луч AB после прохождения через вторую линзу пойдёт по пути BE. Пересечение этой линии с оптической осью второй линзы даст точку D, где сфокусируются все лучи, вышедшие из источника S и прошедшие через обе линзы.


5. Построение изображения тонкой собирающей линзой

При изложении характеристики линз был рассмотрен принцип построения изображения светящейся точки в фокусе линзы. Лучи, падающие на линзу слева, проходят через её задний фокус, а падающие справа - через передний фокус. Следует учесть, что у рассеивающих линз, наоборот, задний фокус расположен спереди линзы, а передний позади.

Построение линзой изображения предметов, имеющих определённую форму и размеры, получается следующим образом: допустим, линия AB представляет собой объект, находящийся на некотором расстоянии от линзы, значительно превышающем её фокусное расстояние. От каждой точки предмета через линзу пройдёт бесчисленное количество лучей, из которых, для наглядности, на рисунке схематически изображён ход только трёх лучей.

Три луча, исходящие из точки A, пройдут через линзу и пересекутся в соответствующих точках схода на A 1 B 1 , образуя изображение. Полученное изображение является действительным и перевёрнутым .

В данном случае изображение получено в сопряжённом фокусе в некоторой фокальной плоскости FF, несколько удалённой от главной фокальной плоскости F’F’, проходящей параллельно ей через главный фокус.

Если предмет находится на бесконечно далёком от линзы расстоянии, то его изображение получается в заднем фокусе линзы F’ действительным , перевёрнутым и уменьшенным до подобия точки.

Если предмет приближён к линзе и находится на расстоянии, превышающем двойное фокусное расстояние линзы, то изображение его будет действительным , перевёрнутым и уменьшенным и расположится за главным фокусом на отрезке между ним и двойным фокусным расстоянием.

Если предмет помещён на двойном фокусном расстоянии от линзы, то полученное изображение находится по другую сторону линзы на двойном фокусном расстоянии от неё. Изображение получается действительным , перевёрнутым и равным по величине предмету.

Если предмет помещён между передним фокусом и двойным фокусным расстоянием, то изображение будет получено за двойным фокусным расстоянием и будет действительным , перевёрнутым и увеличенным .

Если предмет находится в плоскости переднего главного фокуса линзы, то лучи, пройдя через линзу, пойдут параллельно, и изображение может получиться лишь в бесконечности.

Если предмет поместить на расстоянии, меньшем главного фокусного расстояния, то лучи выйдут из линзы расходящимся пучком, нигде не пересекаясь. Изображение при этом получается мнимое , прямое и увеличенное , т. е. в данном случае линза работает как лупа.

Нетрудно заметить, что при приближении предмета из бесконечности к переднему фокусу линзы изображение удаляется от заднего фокуса и по достижении предметом плоскости переднего фокуса оказывается в бесконечности от него.

Эта закономерность имеет большое значение в практике различных видов фотографических работ, поэтому для определения зависимости между расстоянием от предмета до линзы и от линзы до плоскости изображения необходимо знать основную формулу линзы .


6. Формула тонкой линзы

Расстояния от точки предмета до центра линзы и от точки изображения до центра линзы называются сопряжёнными фокусными расстояниями.

Эти величины находятся в зависимости между собой и определяются формулой, называемой формулой тонкой линзы (открытой Исааком Барроу):

где - расстояние от линзы до предмета; - расстояние от линзы до изображения; - главное фокусное расстояние линзы. В случае толстой линзы формула остаётся без изменения с той лишь разницей, что расстояния отсчитываются не от центра линзы, а от главных плоскостей.

Для нахождения той или иной неизвестной величины при двух известных пользуются следующими уравнениями:

Следует отметить, что знаки величин u , v , f выбираются исходя из следующих соображений - для действительного изображения от действительного предмета в собирающей линзе - все эти величины положительны. Если изображение мнимое - расстояние до него принимается отрицательным, если предмет мнимый - расстояние до него отрицательно, если линза рассеивающая - фокусное расстояние отрицательно.

Изображения чёрных букв через тонкую выпуклую линзу с фокусным расстоянием f (отображаются красным цветом). Показаны лучи для букв E, I и K (синим, зеленым и оранжевым соответственно). Размеры реального и перевернутого изображения E (2f) одинаковы. Образ I (f) - в бесконечности. К (при f/2) имеет двойной размер виртуального и прямого изображения


7. Масштаб изображения

Масштабом изображения () называется отношение линейных размеров изображения к соответствующим линейным размерам предмета. Это отношение может быть косвенно выражено дробью , где - расстояние от линзы до изображения; - расстояние от линзы до предмета.

Здесь есть коэффициент уменьшения, т. е. число, показывающее во сколько раз линейные размеры изображения меньше действительных линейных размеров предмета.

В практике вычислений гораздо удобнее это соотношение выражать в значениях или , где - фокусное расстояние линзы.


8. Расчёт фокусного расстояния и оптической силы линзы

Значение фокусного расстояния для линзы может быть рассчитано по следующей формуле:

, где

Коэффициент преломления материала линзы,

Расстояние между сферическими поверхностями линзы вдоль оптической оси, также известное как толщина линзы , а знаки при радиусах считаются положительными, если центр сферической поверхности лежит справа от линзы и отрицательными, если слева. Если пренебрежительно мало, относительно её фокусного расстояния, то такая линза называется тонкой , и её фокусное расстояние можно найти как:

где R>0 если центр кривизны находится справа от главной оптической оси; R<0 если центр кривизны находится слева от главной оптической оси. Например, для двояковыпуклой линзы будет выполняться условие 1/F=(n-1)(1/R1+1/R2)

(Эту формулу также называют формулой тонкой линзы .) Величина фокусного расстояния положительна для собирающих линз, и отрицательна для рассеивающих. Величина называется оптической силой линзы. Оптическая сила линзы измеряется в диоптриях , единицами измерения которых являются м −1 .

Указанные формулы могут быть получены аккуратным рассмотрением процесса построения изображения в линзе с использованием закона Снелла, если перейти от общих тригонометрических формул к параксиальному приближению.

Линзы симметричны, то есть они имеют одинаковое фокусное расстояние независимо от направления света - слева или справа, что, однако, не относится к другим характеристикам, например, аберрациям, величина которых зависит от того, какой стороной линза повёрнута к свету.


9. Комбинация нескольких линз (центрированная система)

Линзы могут комбинироваться друг с другом для построения сложных оптических систем. Оптическая сила системы из двух линз может быть найдена как простая сумма оптических сил каждой линзы (при условии, что обе линзы можно считать тонкими и они расположены вплотную друг к другу на одной оси):

.

Если линзы расположены на некотором расстоянии друг от друга и их оси совпадают (система из произвольного числа линз, обладающих таким свойством, называется центрированной системой), то их общую оптическую силу с достаточной степенью точности можно найти из следующего выражения:

,

где - расстояние между главными плоскостями линз.


10. Недостатки простой линзы

В современной фотоаппаратуре к качеству изображения предъявляются высокие требования.

Изображение, даваемое простой линзой, в силу целого ряда недостатков не удовлетворяет этим требованиям. Устранение большинства недостатков достигается соответствующим подбором ряда линз в центрированную оптическую систему - объектив. Изображения, полученные при помощи простых линз, имеют различные недостатки. Недостатки оптических систем называются аберрациями, которые делятся на следующие виды:

  • Геометрические аберрации
    • Сферическая аберрация;
    • Кома;
    • Астигматизм;
    • Дисторсия;
    • Кривизна поля изображения;
  • Хроматическая аберрация;
  • Дифракционная аберрация (эта аберрация вызывается другими элементами оптической системы, и к самой линзе отношения не имеет).

11. Линзы со специальными свойствами

11.1. Линзы из органических полимеров

Полимеры дают возможность создавать недорогие асферические линзы с помощью литья.

Линзы контактные

В области офтальмологии созданы мягкие контактные линзы. Их производство основано на применении материалов, имеющих бифазную природу, сочетающих фрагменты кремний-органического или кремний-фторорганического полимера силикона и гидрофильного полимера гидрогеля. Работа в течение более 20 лет привела к созданию в конце 90-х годов силикон-гидрогелевых линз, которые благодаря сочетанию гидрофильных свойств и высокой кислородопроницаемости могут непрерывно использоваться в течение 30 дней круглосуточно.


11.2. Линзы из кварца

Кварцевое стекло - переплавленный чистый кремнезём с незначительными (около 0,01 %) добавками Al 2 О 3 , СаО и MgO. Оно отличается высокой термостойкостью и инертностью ко многим химическим реактивам за исключением плавиковой кислоты.

Прозрачное кварцевое стекло хорошо пропускает ультрафиолетовые и видимые лучи света.

11.3. Линзы из кремния

Кремний сочетает сверхвысокую дисперсию с самым большим абсолютным значением коэффициента преломления n=3,4 в диапазоне ИК-излучения и полной непрозрачностью в видимом диапазоне спектра.

Кроме того, именно свойства кремния и новейшие технологии его обработки позволили создать линзы для рентгеновского диапазона электромагнитных волн.

12. Применение линз

Линзы являются универсальным оптическим элементом большинства оптических систем.

Традиционное применение линз - бинокли, телескопы, оптические прицелы, теодолиты, микроскопы и фотовидеотехника. Одиночные собирающие линзы используются как увеличительные стёкла.

Другая важная сфера применения линз офтальмология, где без них невозможно исправление недостатков зрения - близорукости, дальнозоркости, неправильной аккомодации, астигматизма и других заболеваний. Линзы используют в таких приспособлениях, как очки и контактные линзы.

В радиоастрономии и радарах часто используются диэлектрические линзы, собирающие поток радиоволн в приёмную антенну, либо фокусирующие на цели.

В конструкции плутониевых ядерных бомб для преобразования сферической расходящейся ударной волны от точечного источника (детонатора) в сферическую сходящуюся применялись линзовые системы, изготовленные из взрывчатки с разной скоростью детонации (то есть с разным коэффициентом преломления).


Примечания

  1. Наука в Сибири - www.nsc.ru/HBC/hbc.phtml?15 320 1
  2. линзы из кремния для ИК диапазона - www.optotl.ru/mat/Si#2
скачать
Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 09.07.11 20:53:22
Похожие рефераты: Линза Френеля , Линза Люнеберга , Линза Бийе , Электромагнитная линза , Квадрупольная линза , Асферическая линза .

Виды линз Тонкие – толщина линзы мала по сравнению с радиусами поверхностей линзы и расстоянием предмета от линзы. Формула тонкой линзы 1 1 + 1 = F d f . F= d f ; d+ f где F – фокусное расстояние; d- расстояние от предмета до линзы; f – расстояние от линзы до изображения оптический центр R 1 О О 1 главная оптическая ось R 2 О 2

Характеристики линз 1. Фокусное расстояние Точка, в которой пересекаются после преломления в линзе лучи, называют главным фокусом линзы (F). F

Характеристики линз 1. Фокусное расстояние У собирающей линзы два главных действительных фокуса. F Фокусное расстояние (F)

Характеристики линз 2. Оптическая сила линзы Величина, обратная фокусному расстоянию, называется оптической силой линзы D=1/F Измеряется в диоптриях (дптр) 1 дптр=1/м Оптическую силу собирающей линзы считают положительной величиной, а рассеивающей – отрицательной.

Охрана своего зрения Нужно: Нельзя: Ш рассматривать предмет на § читать во время еды, при свече, в движущемся транспорте и лежа; расстоянии не менее 30 см, сидеть за компьютером на расстоянии 6070 см. от экрана, от телевизора – 3 м. (экран должен находиться на уровне глаз); Ш чтобы свет падал с левой стороны; Ш умело пользоваться приборами домашнего обихода; Ш опасные для глаз виды работ выполнять в специальных очках; § смотреть телевизор непрерывно более 2 х часов; § чтобы было слишком яркое освещение помещения; § открыто смотреть на прямые лучи солнечного света; § тереть глаза руками при попадании пыли. Ш при попадании инородного тела протереть глаз чистой влажной салфеткой. Если вы наблюдаете нарушение вашего зрения – обратитесь к врачу (офтальмолог).

Линзы, как правило, имеют сферическую или близкую к сферической поверхность. Они могут быть вогнутыми, выпуклыми или плоскими (радиус равен бесконечности). Обладают двумя поверхностями, через которые проходит свет. Они могут сочетаться по-разному, образуя различные виды линз (фото приведено далее в статье):

  • Если обе поверхности выпуклые (изогнуты наружу), центральная часть толще, чем по краям.
  • Линза с выпуклой и вогнутой сферами называется мениском.
  • Линза с одной плоской поверхностью носит название плоско-вогнутой или плоско-выпуклой, в зависимости от характера другой сферы.

Как определить вид линзы? Остановимся на этом подробнее.

Собирающие линзы: виды линз

Независимо от сочетания поверхностей, если их толщина в центральной части больше, чем по краям, они называются собирающими. Имеют положительное фокусное расстояние. Различают следующие виды собирающих линз:

  • плоско-выпуклые,
  • двояковыпуклые,
  • вогнуто-выпуклые (мениск).

Их еще называют «положительными».

Рассеивающие линзы: виды линз

Если их толщина в центре тоньше, чем по краям, то они носят название рассеивающих. Имеют отрицательное фокусное расстояние. Существуют такие виды рассеивающих линз:

  • плоско-вогнутые,
  • двояковогнутые,
  • выпукло-вогнутые (мениск).

Их еще называют «отрицательными».

Базовые понятия

Лучи от точечного источника расходятся из одной точки. Их называют пучком. Когда пучок входит в линзу, каждый луч преломляется, изменяя свое направление. По этой причине пучок может выйти из линзы в большей или меньшей степени расходящимся.

Некоторые виды оптических линз изменяют направление лучей настолько, что они сходятся в одной точке. Если источник света расположен, по меньшей мере, на фокусном расстоянии, то пучок сходится в точке, удаленной, по крайней мере, на ту же дистанцию.

Действительные и мнимые изображения

Точечный источник света называется действительным объектом, а точка сходимости пучка лучей, выходящего из линзы, является его действительным изображением.

Важное значение имеет массив точечных источников, распределенных на, как правило, плоской поверхности. Примером может служить рисунок на матовом стекле, подсвеченный сзади. Другим примером является диафильм, освещенный сзади так, чтобы свет от него проходил через линзу, многократно увеличивающую изображение на плоском экране.

В этих случаях говорят о плоскости. Точки на плоскости изображения 1:1 соответствуют точкам на плоскости объекта. То же относится и к геометрическим фигурам, хотя полученная картинка может быть перевернутой по отношению к объекту сверху вниз или слева направо.

Схождение лучей в одной точке создает действительное изображение, а расхождение - мнимое. Когда оно четко очерчено на экране - оно действительное. Если же изображение можно наблюдать, только посмотрев через линзу в сторону источника света, то оно называется мнимым. Отражение в зеркале - мнимое. Картину, которую можно увидеть через телескоп - тоже. Но проекция объектива камеры на пленку дает действительное изображение.

Фокусное расстояние

Фокус линзы можно найти, пропустив через нее пучок параллельных лучей. Точка, в которой они сойдутся, и будет ее фокусом F. Расстояние от фокальной точки до объектива называют его фокусным расстоянием f. Параллельные лучи можно пропустить и с другой стороны и таким образом найти F с двух сторон. Каждая линза обладает двумя F и двумя f. Если она относительно тонка по сравнению с ее фокусными расстояниями, то последние приблизительно равны.

Дивергенция и конвергенция

Положительным фокусным расстоянием характеризуются собирающие линзы. Виды линз данного типа (плоско-выпуклые, двояковыпуклые, мениск) сводят лучи, выходящие из них, больше, чем они были сведены до этого. Собирающие объективы могут формировать как действительное, так и мнимое изображение. Первое формируется только в случае, если расстояние от линзы до объекта превышает фокусное.

Отрицательным фокусным расстоянием характеризуются рассеивающие линзы. Виды линз этого типа (плоско-вогнутые, двояковогнутые, мениск) разводят лучи больше, чем они были разведены до попадания на их поверхность. Рассеивающие линзы создают мнимое изображение. И только когда сходимость падающих лучей значительна (они сходятся где-то между линзой и фокальной точкой на противоположной стороне), образованные лучи все еще могут сходиться, образуя действительное изображение.

Важные различия

Следует быть очень внимательными, чтобы отличать схождение или расхождение лучей от конвергенции или дивергенции линзы. Виды линз и пучков света могут не совпадать. Лучи, связанные с объектом или точкой изображения, называются расходящимися, если они «разбегаются», и сходящимся, если они «собираются» вместе. В любой коаксиальной оптической системе оптическая ось представляет собой путь лучей. Луч вдоль этой оси проходит без какого-либо изменения направления движения из-за преломления. Это, по сути, хорошее определение оптической оси.

Луч, который с расстоянием отдаляется от оптической оси, называется расходящимся. А тот, который к ней становится ближе, носит название сходящегося. Лучи, параллельные оптической оси, имеют нулевое схождение или расхождение. Таким образом, когда говорят о схождении или расхождении одного луча, его соотносят с оптической осью.

Некоторые виды которых такова, что луч отклоняется в большей степени к оптической оси, являются собирающими. В них сходящиеся лучи сближаются еще больше, а расходящиеся отдаляются меньше. Они даже в состоянии, если их сила достаточна для этого, сделать пучок параллельным или даже сходящимся. Аналогично рассеивающая линза может развести расходящиеся лучи еще больше, а сходящиеся - сделать параллельными или расходящимися.

Увеличительные стекла

Линза с двумя выпуклыми поверхностями толще в центре, чем по краям, и может использоваться в качестве простого увеличительного стекла или лупы. При этом наблюдатель смотрите через нее на мнимое, увеличенное изображение. Объектив камеры, однако, формирует на пленке или сенсоре действительное, как правило, уменьшенное в размерах по сравнению с объектом.

Очки

Способность линзы изменять сходимость света называется ее силой. Выражается она в диоптриях D = 1 / f, где f - фокусное расстояние в метрах.

У линзы с силой 5 диоптрий f = 20 см. Именно диоптрии указывает окулист, выписывая рецепт очков. Скажем, он записал 5,2 диоптрий. В мастерской возьмут готовую заготовку в 5 диоптрий, полученную на заводе-изготовителе, и отшлифуют немного одну поверхность, чтобы добавить 0,2 диоптрии. Принцип состоит в том, что для тонких линз, в которых две сферы расположены близко друг к другу, соблюдается правило, согласно которому общая их сила равна сумме диоптрий каждой: D = D 1 + D 2 .

Труба Галилея

Во времена Галилея (начало XVII века), очки в Европе были широко доступны. Они, как правило, изготавливались в Голландии и распространялись уличными торговцами. Галилео слышал, что кто-то в Нидерландах поместил два вида линз в трубку, чтобы удаленные объекты казались больше. Он использовал длиннофокусный собирающий объектив в одном конце трубки, и короткофокусный рассеивающий окуляр на другом конце. Если фокусное расстояние объектива равно f o и окуляра f e , то дистанция между ними должна быть f o -f e , а сила (угловое увеличение) f o /f e . Такая схема называется трубой Галилея.

Телескоп обладает увеличением 5 или 6 крат, сравнимым с современными ручными биноклями. Этого достаточно для многих захватывающих Можно без проблем увидеть лунные кратеры, четыре луны Юпитера, фазы Венеры, туманности и звездные скопления, а также слабые звезды в Млечном Пути.

Телескоп Кеплера

Кеплер услышал обо всем этом (он и Галилей вели переписку) и построил еще один вид телескопа с двумя собирающими линзами. Та, у которой большое фокусное расстояние, является объективом, а та, у которой оно меньше - окуляром. Расстояние между ними равно f o + f e , а угловое увеличение составляет f o /f e . Этот кеплеровский (или астрономический) телескоп создает перевернутое изображение, но для звезд или луны это не имеет значения. Данная схема обеспечила более равномерное освещение поля зрения, чем телескоп Галилея, и была более удобна в использовании, так как позволяла держать глаза в фиксированном положении и видеть все поле зрения от края до края. Устройство позволяло достичь более высокого увеличения, чем труба Галилея, без серьезного ухудшения качества.

Оба телескопа страдают от сферической аберрации, в результате чего изображения не полностью сфокусированы, и хроматической аберрации, создающей цветные ореолы. Кеплер (и Ньютон) считал, что эти дефекты невозможно преодолеть. Они не предполагали, что возможны ахроматические виды которых станет известна лишь в XIX веке.

Зеркальные телескопы

Грегори предположил, что в качестве объективов телескопов можно использовать зеркала, так как в них отсутствует цветная окантовка. Ньютон воспользовался этой идеей и создал ньютоновскую форму телескопа из вогнутого посеребренного зеркала и положительного окуляра. Он передал образец Королевскому обществу, где тот находится и по сей день.

Однолинзовый телескоп может проецировать изображение на экран или фотопленку. Для должного увеличения требуется положительная линза с большим фокусным расстоянием, скажем, 0,5 м, 1 м или много метров. Такая компоновка часто используется в астрономической фотографии. Людям, незнакомым с оптикой, может показаться парадоксальной ситуация, когда более слабая длиннофокусная линза дает большее увеличение.

Сферы

Высказывались предположения, что древние культуры, возможно, имели телескопы, потому что они делали маленькие стеклянные шарики. Проблема состоит в том, что неизвестно, для чего они использовались, и они, конечно, не могли бы лечь в основу хорошего телескопа. Шарики могли применяться для увеличения мелких объектов, но качество при этом вряд ли было удовлетворительным.

Фокусное расстояние идеальной стеклянной сферы очень короткое и формирует действительное изображение очень близко от сферы. Кроме того, аберрации (геометрические искажения) значительные. Проблема кроется в расстоянии между двумя поверхностями.

Однако если сделать глубокую экваториальную канавку, чтобы блокировать лучи, которые вызывают дефекты изображения, она превращается из очень посредственной лупы в прекрасную. Такое решение приписывается Коддингтону, а увеличитель его имени можно приобрести сегодня в виде небольших ручных луп для изучения очень маленьких объектов. Но доказательств того, что это было сделано до 19-го века, нет.

Разделы: Физика

Цель урока:

  1. Обеспечить процесс усвоения основных понятий темы “линза” и принципа построения изображений, даваемых линзой
  2. Способствовать развитию познавательного интереса учащихся к предмету
  3. Способствовать воспитанию аккуратности в ходе выполнения чертежей

Оборудование:

  • Ребусы
  • Линзы собирающие и рассеивающие
  • Экраны
  • Свечи
  • Кроссворд

На какой урок Мы с вами пришли? (ребус 1) физика

Сегодня мы с вами будем изучать новый раздел физики – оптика . С этим разделом вы знакомились еще в 8 классе и, наверное, помните некоторые аспекты темы “Световые явления”. В частности давайте вспомним изображения, даваемые зеркалами. Но для начала:

  1. Какие вы знаете типы изображений? (мнимые и действительные).
  2. Какое изображение дает зеркало? (Мнимое, прямое)
  3. На каком расстоянии оно находится от зеркала? (на таком же как и предмет)
  4. А всегда ли правду нам говорят зеркала? (сообщение “Еще раз наоборот”)
  5. А всегда ли в зеркале можно увидеть себя таким, какой ты есть, пусть даже наоборот? (сообщение “Зеркала-дразнилки”)

Сегодня мы продолжим нашу лекцию и поговорим еще об одном предмете оптики. Угадайте. (ребус 2) линза

Линза – прозрачное тело, ограниченное двумя сферическими поверхностями.

Тонкая линза – ее толщина мала по сравнению с радиусами кривизны поверхности.

Основные элементы линзы:

Отличите на ощупь собирающую линзу от рассеивающей. Линзы стоят у вас на столе.

Как же построить изображение в собирающей и рассеивающей линзах?

1. Предмет за двойным фокусом.

2. Предмет в двойном фокусе

3. Предмет между фокусом и двойным фокусом

4. Предмет в фокусе

5. Предмет между фокусом и линзой

6. Рассеивающая линза

Формула тонкой линзы =+

А давно ли люди научились пользоваться линзами? (сообщение “В мире невидимого”)

А сейчас мы с вами попробуем получить изображение окна (свечи) с помощью имеющихся у вас на столе линз. (Опыты)

А зачем нам нужны линзы (для очков, лечение близорукости, дальнозоркости) – это ваше первое домашнее задание – подготовить сообщение об исправлении близорукости и дальнозоркости с помощью очков.

Итак, какое же явление мы использовали, чтобы вести сегодняшний урок (ребус 3) наблюдение.

А сейчас мы проверим, как же вы усвоили тему сегодняшнего урока. Для этого разгадаем кроссворд.

Домашнее задание:

  • ребусы,
  • кроссворды,
  • сообщения о близорукости и дальнозоркости,
  • лекционный материал

Зеркала-дразнилки

До сих пор шла речь о честных зеркалах. Они показывали мир таким, каков он есть. Ну разве что вывернутым справа на лево. Но бывают зеркала-дразнилки, кривые зеркала. Во многих парках культуры и отдыха есть такой аттракцион – “комната - смеха”. Там каждый желающий может увидеть себя то коротким и круглым, как кочан капусты, то длинным и тонким, как морковка, то похожим на проросшую луковицу: почти без ног и с раздутым животом, из которого, словно стрелка, тянется вверх узенькая грудь и уродливо вытянутая голова на тончайшей шее.

Ребята помирают со смеху, а взрослые стараясь сохранить серьезность, только качают головами. И от этого отражения их голов в зеркалах-дразнилках перекашиваются самым уморительным образом.

Комната смеха есть не везде, но зеркала-дразнилки окружают нас и в жизни. Ты, верно, не раз любовался своим отражением в стеклянном шарике с новогодней елки. Или в никелированном металлическом чайнике, кофейнике, самоваре. Все изображения очень забавно искажены. Это потому, что “зеркала” выпуклые. На руле велосипеда, мотоцикла, у кабины водителя автобуса тоже прикрепляют выпуклые зеркала. Они дают почти неискаженное, но несколько уменьшенное изображение дороги позади, а в автобусах еще и задней двери. Прямые зеркала тут не годятся: в них видно слишком мало. А выпуклое зеркало, даже маленькое, вмещает в себя большую картину.

Бывают иногда и вогнутые зеркала. Ими пользуются для бритья. Если близко подойти к такому зеркалу, увидишь свое лицо сильно увеличенным. В прожекторе тоже применено вогнутое зеркало. Это оно собирает лучи от лампы в параллельный пучок.

В мире невиданного

Около четырехсот лет назад искусные мастера в Италии и в Голландии научились делать очки. Вслед за очками изобрели лупы для рассматривания мелких предметов. Это было очень интересно и увлекательно: вдруг увидеть во всех подробностях какое-нибудь просяное зернышко или мушиную ножку!

В наш век радиолюбители строят аппаратуру, позволяющую принимать все более удаленные станции. А триста лет назад любители оптики увлекались шлифованием все более сильных линз, позволяющих дальше проникнуть в мир невидимого.

Одним из таких любителей был голландец Антоний Ван Левенгук. Линзы лучших мастеров того времени увеличивали всего в 30-40 раз. А линзы Левенгука давали точное, чистое изображение, увеличенное в 300 раз!

Словно целый мир чудес открывался перед пытливым голландцем. Левенгук тащил под стекло все, что только попадалось ему на глаза.

Он первый увидел микроорганизмы в капле воды, капиллярные сосуды в хвосте головастика, красные кровяные тельца и десятки, сотни других удивительных вещей, о которых до него никто не подозревал.

Но думайте что Левенгуку легко давались его открытия. Это был самоотверженный человек, отдавший исследованиям всю свою жизнь. Его линзы были очень неудобны, не то что теперешние микроскопы. Приходилось носом упираться в специальную подставку, чтобы во время наблюдения голова была совершенно неподвижна. И вот так, упершись в подставку, Левенгук делал свои опыты целых 60 лет!

Еще раз наоборот

В зеркале ты видишь себя не совсем так, как видят тебя окружающие. В самом деле, если ты зачесываешь волосы на одну сторону, в зеркале они будут зачесаны на другую. Если на лице родинки, они тоже окажутся не с той стороны. Если все это перевернуть зеркально, лицо покажется другим, незнакомым.

Как бы все-таки увидеть себя таким, каким видят окружающие? Зеркало все переворачивает наоборот… Ну что же! Давайте мы его перехитрим. Подсунем ему изображение, уже перевернутое, уже зеркальное. Пускай перевернет еще раз наоборот, и все станет на свое место.

Как это сделать? Да с помощью второго зеркала! Встаньте перед стенным зеркалом и возьмите еще одно, ручное. Держите его под острым углом к стенному. Ты перехитришь оба зеркала: в обоих появится твое “правое” изображение. Это легко проверить с помощью шрифта. Поднеси к лицу книжку с крупной надписью на обложке. В обоих зеркалах надпись будет читаться правильно, слева направо.

А теперь попробуй потяни себя за чуб. Уверен, что это удастся не сразу. Изображение в зеркале на этот раз совершенно правильное, не вывернутое справа налево. Именно поэтому ты и будешь ошибаться. Ты ведь привык видеть в зеркале зеркальное изображение.

В магазинах готового платья и в пошивочных ателье бывают трехстворчатые зеркала, так называемые трельяжи. В них тоже можно увидеть себя “со стороны”.

Литература:

  • Л. Гальперштейн, Забавная физика, М.: детская литература, 1994