Антигены. Свойства антигенов, строение и основные функции. Что такое антиген: определение, виды. Антигены и антитела Антигены организма

План лекции:

1. Антигены: определение, строение, основные свойства.

2. Антигены микроорганизмов.

3. Антигены человека и животных.

4. Антитела: определение, основные функции, строение.

5. Классы иммуноглобулинов, их характеристика.

6. Динамика образования антител.

Антигены (от греч. anti - против, genos - создавать; термин предложил в 1899 г. Дойч ) - вещества различного происхождения, несущие признаки генетической чужеродности и при введении в организм вызывающие развитие специфических иммунологических реакций.

Основные функции антигенов:

Индуцируют иммунологический ответ (синтез антител и запуск реакций клеточного иммунитета).

Специфически взаимодействуют с образовавшимися антителами (in vivo и in vitro).

Обеспечивают иммунологическую память - способность организма отвечать на повторное введение антигена иммунологической реакцией, характеризующейся большей силой и более быстрым развитием.

Обуславливают развитие иммунологической толерантности - отсутствие иммунного ответа на конкретный антиген при сохранении спо-собности к иммунному ответу на другие антигены.

Строение антигенов:

Антигены состоят из 2 частей :

1. Высокомолекулярный носитель (шлеппер) - высокополимерный белок, определяющий антигенность и иммуногенность антигена.

2. Детерминантные группы (эпитопы) - поверхностные структуры антигена, комплементарные активному центру антител или рецептору Т-лимфоцита и определяющие специфичность антигена. На одном носителе может быть несколько разных эпитопов, состоящих из пептидов или липополисахаридов и располагающихся в разных частях молекулы антигена. Их разнообразие достигается за счет мозаики аминокислотных или липополисахаридных остатков, располагающихся на поверхности белка.

Количество детерминантных групп или эпитопов определяет валентность антигена .

Валентность антигена - количество одинаковых эпитопов на молекуле антигена, равное числу молекул антител, которые могут к ней присоединяться.

Основные свойства антигенов:

1. Иммуногенность - способность вызывать иммунитет, невосприимчивость к инфекции (применяется для характеристики инфекционных агентов).

2. Антигенность - способность вызывать образование специфических антител (частный вариант иммуногенности).

3. Специфичность - свойство, по которому антигены различаются между собой и определяющее способность избирательно реагировать со специфическими антителами или сенсибилизированными лимфоцитами.

Иммуногенность, антигенность и специфичность зависят от многих факторов.

Факторы, определяющие антигенность:

- Чужеродность (гетерогенность) - генетически обусловленное свойство антигенов одних видов животных отличаться от антигенов других видов животных (чем дальше друг от друга в фенотипическом отношении находятся животные, тем большей антигенностью по отношению друг к другу они обладают).


- Молекулярный вес должен быть не менее 10000 дальтон, с увеличением молекулярного веса антигенность возрастает.

- Химическая природа и химическая однородность: наибольшей антигенностью обладают белки, их комплексы с липидами (липопротеиды), с углеводами (гликопротеиды), с нуклеиновыми кислотами (нуклеопротеиды), а также сложные полисахариды (при массе более 100000 D), липополисахариды; сами по себе нуклеиновые кислоты, липиды вследствие недостаточной жесткости структуры неиммуногенны.

- Жесткость структуры (помимо определенной химической природы антигены должны обладать определенной жесткостью структуры, например, денатурированные белки не обладают антигенностью).

- Растворимость (нерастворимые белки не могут находиться в коллоидной фазе и не вызывают развитие иммунных реакций).

Факторы, определяющие иммуногенность:

Свойства антигенов.

Способ введения антигена (перорально, внутрикожно, внутримышечно).

Доза антигена.

Интервал между введением.

Состояние иммунизированного макроорганизма.

Скорость разрушения антигена в организме и выведения его из организма.

Иммуногенность и антигенность могут не совпадать! Например, дизентерийная палочка обладает высокой антигенностью, но выраженного иммунитета против дизентерии не вырабатывается.

Факторы, определяющие специфичность:

Химическая природа антигенной детерминанты.

Строение антигенной детеминанты (вид и последовательность аминокислот в первичной полипептидной цепи).

Пространственная конфигурация антигенных детерминант.

Виды антигенов по строению:

1. Гаптены (неполноценные антигены) - это чистая детерминантная группа (имеют небольшую молекулярную массу, не распознаются иммунокомпетентными клетками, обладают только специфичностью, т.е. не способны вызывать образование антител, но вступают с ними в специфическую реакцию):

- простые - взаимодействуют с антителами в организме, но не способны реагировать с ними in vitro;

- сложные - взаимодействуют с антителами in vivo и in vitro.

2. Полноценные (конъюгированные) антигены - образуются при связывании гаптена с высокомолекулярным носителем, обладающим иммуногенностью.

3. Полугаптены - это неорганические радикалы (J - , Cr - , Br - , N +), связанные молекулами белка.

4. Проантигены - гаптены, способные присоединяться к белкам организма и сенсибилизировать их как аутоантигены.

5. Толерогены - антигены, способные подавлять иммунологические реакции с развитием специфической неспособности отвечать на них.

Виды антигенов по степени чужеродности:

1. Видовые антигены - антигены определенного вида организмов.

2. Групповые антигены (аллоантигены) - антигены, обусловливающие внутривидовые различия у особей одного вида, разделяющие их на группы (серогруппы у микроорганизмов, группы крови у человека).

3. Индивидуальные антигены (изоантигены) - антигены конкретного индивидуума.

4. Гетерогенные (перекрестнореагирующие, ксеноантигены) антигены - антигены, общие для организмов разных видов, далеко отстоящих друг от друга:

- антигенная мимикрия - длительное отсутствие иммунологической реакции на антигены из-за схожести с антигенами хозяина (микроорганизмы не распознаются как чужеродные);

- перекрестные реакции - образовавшиеся на антигены микроорганизмов антитела вступают в контакт с антигенами хозяина и могут вызывать иммунологический процесс (например: гемолитический стрептококк обладает перекрестнореагирующими антигенами с антигенами миокарда и почечных клубочков; вирус кори имеет перекрестнореагирующие антигены к белку миелину, поэтому иммунная реакция способствует демиелинизации нервных волокон и развитию рассеянного склероза).

Антигены микроорганизмов в зависимости от систематического положения:

1. Видоспецифические - антигены одного вида микроорганизмов.

2. Группоспецифические - антигены одной группы в пределах вида (подразделяют микроорганизмы на серогруппы ).

3. Типоспецифические - антигены одного типа (варианта) в пределах вида (подразделяют микроорганизмы на серовары/серотипы ).

Антигены (греч. anti- против + gennao создавать, производить)

биоорганические вещества, которые обладают признаками генетической чужеродности (антигенности) и при введении в вызывают развитие иммунного ответа.

Антигенность присуща не только белкам, но и многим сложным полисахаридам, липополисахаридам, полипептидам, а также некоторым искусственным высокополимерным соединениям. А. могут находиться в микробах (микробные ) и в тканях (тканевые антигены) животных и растений. на введение А. может проявляться в виде стимуляции выработки антител, клеточных реакций замедленной гиперчувствительности, трансплантационного иммунитета или возникновения толерантности (см. Иммунитет).

Термин « » употребляется в двояком смысле: для обозначения определенного очищенного примесей молекулярно-гомогенного вещества (например, кристаллический сывороточный , яичный альбумин, очищенный микробный и др.) или сложных препаратов, клеток или тканей, содержащих большое количество отдельных антигенных веществ.

Микробные А. являются основой иммунизирующих препаратов - вакцин (Вакцины), в т.ч. анатоксинов - бактериальных экзотоксинов, обезвреженных формалином. Наиболее значимые для развития невосприимчивости вакцинирующие А. носят название протективных.

Для проявления антигенности большое значение имеет молекулярная масса. например, приобретают , соединенные в полипептидную цепь достаточной величины и сложности. Имеются вещества, достаточно специфичные, чтобы нести признаки чужеродности, но обладающие малой величиной молекулы. Они вызывают реакции иммунитета в смеси со специальными стимуляторами антителогенеза. Минимальная молекулярная масса, необходимая для проявления антигенности, должна быть не менее десятка тысяч. например, яичный альбумин (один из низкомолекулярных полноценных антигенов) имеет молекулярную массу 40000, сывороточный альбумин - около 70000. с меньшей молекулярной массой могут стимулировать выработку антител при их введении со стимуляторами типа адъюванта Фрейнда. К таким веществам относятся, например, рибонуклеаза (молекулярная масса 13000), (молекулярная масса 6000). Наименьшая молекулярная масса веществ, против которых удалось получить без их присоединения к другим, более крупным молекулам, составляет примерно 1000 ( , ангиотензин). Полипептиды, размер которых превышает 8 аминокислот, обязательно являются антигенами.

Существует несколько объяснений значения величины молекулярной массы для осуществления ее антигенных функций. Высказывались предположения о значении того факта, что более крупные молекулы эффективнее захватываются макрофагами и дольше не выводятся из организма. В дальнейшем было получено более рациональное объяснение этого явления. Вскоре после открытия Т- и В-лимфоцитов и их взаимодействия для инициирования иммунного ответа было показано, что лимфоциты несут на своей поверхности разные . Рецепторы В-лимфоцитов имеют сродство к малым структурным специфичностям молекулы антигена, к его антигенным детерминантам; Т-лимфоциты обладают рецепторами к основной несущей части молекулы. Для индукции иммунного ответа необходимо стимулирование обоих типов лимфоцитов, в котором существенное значение имеет величина молекулы антигена.

Чужеродность - неотделимое от антигена понятие. Без чужеродности нет антигена применительно к данному организму. например, альбумин кролика не является антигеном для этого животного, но генетически чужероден для морской свинки.

Антигенность - мера антигенного качества, например большая или меньшая способность вызывать образование антител. Так, на бычий сывороточный гамма-глобулин у кролика вырабатывается большее количество антител, чем на бычий сывороточный альбумин.

Иммуногенность - способность создавать . Это понятие относится главным образом к микробным А., обеспечивающим создание иммунитета (невосприимчивость) к инфекциям.

Например, возбудитель дизентерии обладает высокой антигенностью, но выраженного иммунитета против дизентерии получить не удается. Возбудитель брюшного тифа является и высокоантигенным, и высокоиммуногенным. Поэтому брюшнотифозная создает выраженный иммунитет.

Специфичность - антигенные особенности, отличающие А. друг от друга. Существуют вещества, имеющие свой специфический облик, но не вызывающие иммунных реакций (в частности, выработку антител) при введении в организм. Однако с готовыми антителами они взаимодействуют. Такие вещества получили название гаптенов, или неполноценных антигенов. Гаптены имеют признаки чужеродности, но не обладают определенными качествами, необходимыми для проявления полноценных антигенных свойств. Гаптены приобретают свойства полноценных А после соединения с крупномолекулярными веществами° - белками, полисахаридами или искусственными высокомолекулярными полиэлектролитами.

Антигены, полученные путем присоединения к молекуле белка химической группировки, обеспечивающей новую иммунологическую специфичность, называются конъюгированными антигенами.

При иммунизации животных конъюгированными А., состоящими из одного и того же белка, но содержащими разные введенные химические группировки, образуются антитела, специфичные по отношению к этим поверхностным детерминантам. Следовательно, специфичность определяется введенной химической группой, получившей название антигенной детерминанты (эпитопа).

Одна и та же антигенная в виде гаптена, расположенная на разных носителях, обеспечивает выработку антител одной и той же специфичности. Однако антигенность получаемых комплексов различна при разных молекулах-носителях. Это свидетельствует о существовании в организме по крайней мере двух распознающих клеточных систем: для антигенной детерминанты и для несущей части молекулы.

Крупные белковые или полисахаридные молекулы несут на себе по нескольку детерминантных группировок. Посредством определения количества молекул антител, присоединяющихся к одной молекуле антигена, рассчитано число реактивных групп (валентности) различных белков. Это число увеличивается пропорционально возрастанию молекулярной массы белковых молекул.

Количество детерминантных групп на белковой молекуле имеет существенное значение для реализации ею антигенной функции. Так, для того, чтобы конъюгированный антиген, содержащий арсаниловую кислоту, осаждался анти-арсаниловой сывороткой, его молекула должна нести не менее 10-20 молекул арсаниловой кислоты. Различные антигенные детерминанты, расположенные на белковой полисахаридной молекуле, не равнозначны в процессе стимуляции иммунного ответа. Наиболее активные из них получили название иммунодоминантных групп.

Полисахариды, содержащие различные и аминосахара, сами по себе, без связи с липидом или белком, при достаточной величине молекулярной массы могут выступать в роли полноценных А. Они обязательно должны иметь повторяющиеся структурные элементы. Примерами служат А. групп крови, полисахаридные комплексы капсул пневмококков. и стероиды неантигенны. Предполагают, что , составляющие основу липидов, не обладают достаточной жесткостью структуры молекул, т.к. содержат длинные цепи парафиновых углеводородов. Значение жесткости структуры показано на примере малоантигенного - белка, не имеющего устойчивой конфигурации из-за большого содержания глицина. Введение в молекулу 2% тирозина или других групп с жесткой структурой превращает в вещество с выраженными антигенными свойствами.

Различают антигенную специфичность нескольких основных типов: видовую и групповую специфичность а также гетероспецифичность. Видовая специфичность позволяет отличать представителей одного вида организмов от особей другого вида по так называемым видоспецифическим А. С помощью антител против сывороточных белков человека (так называемые античеловеческие видоспецифические сыворотки) легко отличают крови, принадлежащее человеку, от любого пятна крови животных. По различным бактериальным А (О-антиген, Н-антиген, К-антиген и др.) можно отличить не только бактерий, но и его варианты. Групповая специфичность обусловливает различия среди особей одного вида организмов.

Антигены, по которым особи или группы особей животных одного вида различаются между собой, получили название изоантигенов (алло-антигенов). Для эритроцитов человека, кроме изоантигенов АВО. известно более 70 других, объединенных в 15 изоантигенных систем. Детально изучено химическое строение изоантигенов групп крови системы АВО. Показано, что эти антигены представляют собой полисахаридные комплексы. К изоантигенам относятся антигены гистосовместимости, или трансплантационные антигены. обусловливающих внутривидовые различия клеток и тканей, вследствие чего возникает их несовместимость при трансплантации (Трансплантация) органов и тканей.

Гетероспецифичность - общая специфичность для представителей разных видов антигенных комплексов или общие антигенные детерминанты на антигенных комплексах, различающихся по другим признакам. Общие А встречаются у весьма отдаленных видов. Их называют гетерогенными антигенами. Примером гетерогенного антигена является антиген Форссмана, присутствующий в эритроцитах овец, лошадей, собак, кошек, мышей, кур, но отсутствующий у человека, обезьян, кроликов, крыс, уток. Описаны общие А. для человека и возбудителя чумы. А., определяющие группу крови А человека, обнаружены у вируса гриппа и некоторых других микроорганизмов. За счет гетерогенных антигенов могут возникать перекрестные иммунные реакции, приводящие к ошибочным заключениям А., специфичные для определенных тканей или органов, называют соответственно тканеспецифическими или органоспецифическими.

Новую антигенную специфичность могут приобретать , образуя комплексы с рядом лекарственных веществ, которые в этих случаях выступают в роли гаптенов. Этим можно объяснить возникновение лекарственной аллергии (Лекарственная аллергия), в т.ч. и аллергических реакций на , которые сами по себе неантигенны. например к пенициллину развивается у 1% больных, которым его вводят парентерально. Показано, что с белками ассоциируется не сам пенициллин, а продукты его распада, в частности бензилпенициллиновая кислота. Амидопирин хинидин, и некоторые другие лекарственные препараты обладают сродством к белкам форменных элементов крови. Соединяясь с ними, они могут вызвать иммунные поражения, сопровождающиеся развитием и лейкопении. Реализация этого процесса происходит при определенной предрасположенности индивидуума - врожденной или приобретенной.

Нередко лекарственно-модифицированные антигенные субстанции организма называют аутоантигенами. Однако это не совсем точно Истинными аутоантигенами являются нормальные компоненты организма, против которых при аутоиммунных заболеваниях возникают антитела () или клеточные аутоиммунные реакции (см. Аутоаллергия , Аутоиммунные болезни).


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Антигены" в других словарях:

    Современная энциклопедия

    Антигены - (от анти... и...ген), вещества, которые воспринимаются организмом как чужеродные и вызывают специфический иммунный ответ. Способны взаимодействовать с клетками иммунной системы и антителами. Попадание антигена в организм может привести к… … Иллюстрированный энциклопедический словарь

    - (от анти... и...ген) вещества, которые воспринимаются организмом как чужеродные и вызывают специфический иммунный ответ. Способны взаимодействовать с клетками иммунной системы и антителами. Попадание антигенов в организм может вызвать… … Большой Энциклопедический словарь

    Вещества, вызывающие в тканях макроорганизмов реакцию, направленную в конечном счете на удаление их из организма. Первой реакций на А. является образование специфичных им антител. В качестве А. могут выступать в основном белки, а также др.… … Словарь микробиологии

    Неструктурные белковые продукты ранних генов аденовирусов, вируса SV 40 и вируса полиомы. Специфичны для вирусов. Выделяют диффузией в агаре, ИФА, РСК. Биол. функция не известна. (Источник: «Словарь терминов микробиологии») … Словарь микробиологии

    - [Словарь иностранных слов русского языка

    - [от анти... и...ген(ы)], вещества белковой природы или полисахариды, которые, проникая в кровь, вызывают образование в ней специфических антител, способных нейтрализовать его болезнетворное действие. Все белки обладают свойствами антигенов,… … Экологический словарь

    Антигены - белковые образования, контролирующиеся генами, которые дают специфическую реакцию с соответствующими сыворотками... Источник: МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРОГНОЗИРОВАНИЕ, РАННЯЯ ДОКЛИНИЧЕСКАЯ ДИАГНОСТИКА И ПРОФИЛАКТИКА ИНСУЛИНЗАВИСИМОГО САХАРНОГО… … Официальная терминология

    АНТИГЕНЫ - АНТИГЕНЫ, в иммунологии название веществ, способных при введении их в животный организм вызвать в жидкостях и клетках последнего такие изменения, к рые влекут за собой появление и нарастание избирательного реактивного сродства этих клеток и… … Большая медицинская энциклопедия

    Ов; мн. (ед. антиген, а; м.). Вещества, чужеродные для данного организма, вызывающие образование антител. ◁ Антигенный, ая, ое. А ые вещества. * * * антигены (от анти... и...ген), вещества, которые воспринимаются организмом как чужеродные и… … Энциклопедический словарь

    Вещества генетически чужеродной информации, способные при попадании в организм вызывать иммунный ответ, направленный на их удаление или нейтрализацию. Обычно это макромолекулы – белки или полисахариды, входящие в состав клеток, тканей, органов и… … Биологический энциклопедический словарь

Книги

  • Биологические методы лечения онкологических заболеваний , Под редакцией Винсента Т. ДеВита , мл. , Сэмюэля Хеллмана , Стивена А. Розенберга , Книга посвящена одной из острейших проблем современной медицины - онкологическим заболеваниям. В ней подробно изложены новые биохимические подходы к лечению онкологических больных, новые… Категория: Онкология. Опухоли Издатель:
  • 1.Медицинская микробиология. Предмет, задачи, методы, связь с другими науками. Значение медицинской микробиологии в практической деятельности врача.
  • 3. Микроорганизмы и их положение в системе живого мира. Номенклатура бактерий. Принципы классификации.
  • 6. Рост и размножение бактерий. Фазы размножения.
  • 7.Питание бактерий. Типы и механизмы питания бактерий. Аутотрофы и гетеротрофы. Факторы роста. Прототрофы и ауксотрофы.
  • 8.Питательные среды. Искусственные питательные среды: простые, сложные, общего назначения, элективные, дифференциально-диагностические.
  • 9. Бактериологический метод изучения микроорганизмов. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий. Характер роста микроорганизмов на жидких и плотных питательных средах.
  • 13. Спирохеты, их морфология и биологические свойства. Патогенные для человека виды.
  • 14. Риккетсии, их морфология и биологические свойства. Роль риккетсий в инфекционной патологии.
  • 15. Морфология и ультраструктура микоплазм. Виды, патогенные для человека.
  • 16. Хламидии, морфология и другие биологические свойства. Роль в патологии.
  • 17. Грибы, их морфология и особенности биологии. Принципы систематики. Заболевания, вызываемые грибами у человека.
  • 20. Взаимодействие вируса с клеткой. Фазы жизненного цикла. Понятие о персистенции вирусов и персистентных инфекциях.
  • 21. Принципы и методы лабораторной диагностики вирусных инфекций. Методы культивирования вирусов.
  • 24. Строение генома бактерий. Подвижные генетические элементы, их роль в эволюции бактерий. Понятие о генотипе и фенотипе. Виды изменчивости: фенотипическая и генотипическая.
  • 25. Плазмиды бактерий, их функции и свойства. Использование плазмид в генной инженерии.
  • 26. Генетические рекомбинации: трансформация, трансдукция, конъюгация.
  • 27. Генная инженерия. Использование методов генной инженерии для получения диагностических, профилактических и лечебных препаратов.
  • 28.Распространение микробов в природе. Микрофлора почвы, воды, воздуха, методы ее изучения. Характеристика санитарно-показательных микроорганизмов.
  • 29. Нормальная микрофлора тела человека, ее роль в физиологических процессах и патологии. Понятие о дисбактериозе. Препараты для восстановления нормальной микрофлоры: эубиотики (пробиотики).
  • 31. Формы проявления инфекции. Персистенция бактерий и вирусов. Понятие о рецидиве, реинфекции, суперинфекции.
  • 32. Динамика развития инфекционного процесса, его периоды.
  • 33. Роль микроорганизма в инфекционном процессе. Патогенность и вирулентность. Единицы измерения вирулентности. Понятие о факторах патогенности.
  • 34. Классификация факторов патогенности по о.В. Бухарину. Характеристика факторов патогенности.
  • 35. Понятие об иммунитете. Виды иммунитета.
  • 36. Неспецифические защитные факторы организма против инфекции. Роль и.И. Мечникова в формировании клеточной теории иммунитета.
  • 37. Антигены: определение, основные свойства. Антигены бактериальной клетки. Практическое использование антигенов бактерий.
  • 38. Структура и функции иммунной системы. Кооперация иммунокомпетентных клеток. Формы иммунного ответа.
  • 39. Иммуноглобулины, их молекулярная структура и свойства. Классы иммуноглобулинов. Первичный и вторичный иммунный ответ. :
  • 40. Классификация гиперчувствительности по Джейлу и Кумбсу. Стадии аллергической реакции.
  • 41. Гиперчувствительность немедленного типа. Механизмы возникновения, клиническая значимость.
  • 42. Анафилактический шок и сывороточная болезнь. Причины возникновения. Механизм. Их предупреждение.
  • 43. Гиперчувствительность замедленного типа. Кожно-аллергические пробы и их использование в диагностике некоторых инфекционных заболеваний.
  • 44. Особенности противовирусного, противогрибкового, противоопухолевого, трансплантационного иммунитета.
  • 45. Понятие о клинической иммунологии. Иммунный статус человека и факторы, влияющие на него. Оценка иммунного статуса: основные показатели и методы их определения.
  • 46. Первичные и вторичные иммунодефициты.
  • 47. Взаимодействие антигена с антителом in vitro. Теория сетевых структур.
  • 48. Реакция агглютинации. Компоненты, механизм, способы постановки. Применение.
  • 49. Реакция Кумбса. Механизм. Компоненты. Применение.
  • 50. Реакция пассивной гемагглютинации. Механизм. Компоненты. Применение.
  • 51. Реакция торможения гемагглютинации. Механизм. Компоненты. Применение.
  • 53. Реакция связывания комплемента. Механизм. Компоненты. Применение.
  • 54. Реакция нейтрализации токсина антитоксином, нейтрализации вирусов в культуре клеток и в организме лабораторных животных. Механизм. Компоненты. Способы постановки. Применение.
  • 55. Реакция иммунофлюоресценции. Механизм. Компоненты. Применение.
  • 56. Иммуноферментный анализ. Иммуноблотинг. Механизмы. Компоненты. Применение.
  • 57. Вакцины. Определение. Современная классификация вакцин. Требования, предъявляемые к вакцинным препаратам.
  • 59. Вакцинопрофилактика. Вакцины из убитых бактерий и вирусов. Принципы приготовления. Примеры убитых вакцин. Ассоциированные вакцины. Преимущества и недостатки убитых вакцин.
  • 60. Молекулярные вакцины: анатоксины. Получение. Использование анатоксинов для профилактики инфекционных заболеваний. Примеры вакцин.
  • 61. Генно-инженерные вакцины. Получение. Применение. Преимущества и недостатки.
  • 62. Вакцинотерапия. Понятие о лечебных вакцинах. Получение. Применение. Механизм действия.
  • 63. Диагностические антигенные препараты: диагностикумы, аллергены, токсины. Получение. Применение.
  • 64. Сыворотки. Определение. Современная классификация сывороток. Требования, предъявляемые к сывороточным препаратам.
  • 65. Антительные препараты – сыворотки, применяемые для лечения и профилактики инфекционных заболеваний. Способы получения. Осложнения при применении и их предупреждение.
  • 66. Антительные препараты – сыворотки, применяемые для диагностики инфекционных заболеваний. Способы получения. Применение.
  • 67. Понятие об иммуномодуляторах. Принцип действия. Применение.
  • 68. Интерфероны. Природа, способы получения. Применение. № 99 Интерфероны. Природа, способы получения. Применение.
  • 69. Химиотерапевтические препараты. Понятие о химиотерапевтическом индексе. Основные группы химиотерапевтических препаратов, механизм их антибактериального действия.
  • 71. Лекарственная устойчивость микроорганизмов и механизм ее возникновения. Понятие о госпитальных штаммах микроорганизмов. Пути преодоления лекарственной устойчивости.
  • 72. Методы микробиологической диагностики инфекционных болезней.
  • 73. Возбудители брюшного тифа и паратифов. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 74. Возбудители эшерихиозов. Таксономия. Характеристика. Роль кишечной палочки в норме и патологии. Микробиологическая диагностика эшерихиозов.
  • 75. Возбудители шигеллеза. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 76. Возбудители сальмонеллезов. Таксономия. Характеристи­ка. Микробиологический диагноз сальмонеллезов. Лечение.
  • 77. Возбудители холеры. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профи­лактика и лечение.
  • 78.Стафилококки. Таксономия. Характеристика. Микроби­ологическая диагностика заболеваний, вызываемых ста­филококками. Специфическая профилактика и лечение.
  • 79. Стрептококки. Таксономия. Характеристика. Микро­биологическая диагностика стрептококковых инфек­ций. Лечение.
  • 80. Менингококки. Таксономия. Характеристика. Микро­биологическая диагностика стрептококковых инфек­ций. Лечение.
  • 81. Гонококки. Таксономия. Характеристика. Микробио­логическая диагностика гонореи. Лечение.
  • 82. Возбудитель туляремии. Таксономия. Характеристи­ка. Микробиологическая диагностика. Специфическая про­филактика и лечение.
  • 83. Возбудитель сибирской язвы. Таксономия и характе­ристика. Микробиологическая диагностика. Специфичес­кая профилактика и лечение.
  • 84. Возбудитель бруцеллеза. Таксономия и характерис­тика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 85. Возбудитель чумы. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профи­лактика и лечение.
  • 86. Возбудители анаэробной газовой инфекции. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 87. Возбудители ботулизма. Таксономия и характеристика Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 88. Возбудитель столбняка. Таксономия и характеристика. Микробиологическая диагностика и лечение.
  • 89. Неспорообразующие анаэробы. Таксономия. Характе­ристика. Микробиологическая диагностика и лечение.
  • 90. Возбудитель дифтерии. Таксономия и характеристика. Условно – патогенные коринебактерии. Микробиологическая диагностика. Выявления анатоксического иммунитета. Специфическая профилактика и лечение.
  • 91. Возбудители коклюша и паракоклюша. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 92. Возбудители туберкулеза. Таксономия и характеристика. Условно – патогенные микобактерии. Микробиологическая диагностика туберкулеза.
  • 93. Актиномицеты. Таксономия. Характеристика. Мик­робиологическая диагностика. Лечение.
  • 95. Возбудитель хламидиозов. Таксономия. Характеристи­ка. Микробиологическая диагностика. Лечение.
  • 96.Возбудитель сифилиса. Таксономия. Характеристика. Микробиологическая диагностика. Лечение.
  • 97. Возбудитель лептоспирозов. Таксономия. Характери­стика. Микробиологическая диагностика. Специфическая профилактика. Лечение.
  • 98. Возбудитель боррелиозов. Таксономия. Характерис­тика. Микробиологическая диагностика.
  • 99. Клиническая микробиология, ее задачи. Вби, особенности причины возникновления.Роль условно – патогенных микроорганизмов в возникновении внутрибольничных инфекций.
  • 100. Классификация грибов. Характеристика. Роль в патологии. Лабораторная диагностика. Лечение.
  • 101. Классификация микозов. Поверхностные и глубокие микозы. Дрожжеподобные грибы рода кандида. Роль в патологии человека.
  • 102. Возбудитель гриппа. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилакти­ка и лечение.
  • 103. Возбудитель полиомиелита. Таксономия и характери­стика. Лабораторная диагностика. Специфическая про­филактика.
  • 104. Возбудители гепатитов а и е. Таксономия. Характе­ристика. Лабораторная диагностика. Специфическая про­филактика.
  • 105. Возбудитель клещевого энцефалита. Таксономия. Ха­рактеристика. Лабораторная диагностика. Специфичес­кая профилактика.
  • 106. Возбудитель бешенства. Таксономия. Характеристи­ка. Лабораторная диагностика. Специфическая профи­лактика.
  • 107. Возбудитель краснухи. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилак­тика.

37. Антигены: определение, основные свойства. Антигены бактериальной клетки. Практическое использование антигенов бактерий.

Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

Антигенность . Под антигенностью понимают потенциаль­ную способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген дол­жен выступать специфическим раздражителем по отношению к иммунокомпетентным клет­кам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее не­большим участком, который получил название «антигенная детерминанта», или «эпитоп».

Чужеродность является обязательным усло­вием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объ­екты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как имму-нокомпетентные клетки не способны напря­мую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

Иммуногенность - потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы: 1. Молекулярные особенности антигена; 2. Клиренс антигена в организме; 3. Реактивность макроорганизма.

К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики.

Иммуногенность в значительной степени за­висит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Оказалась также существенной стерическая стабильность молекулы антигена. Еще одним важным условием иммуно­генности является растворимость антигена.

Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияет количество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ.

Третья группа объединяет факторы , опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы.

Специфичностью называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа - необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раз­дражение всегда отвечает поликлональными им­мунным ответом.

Антиге­ны бактериальной клетки. В структуре бактериальной клетки разли­чают жгутиковые, соматические, капсульные и некоторые другие антигены. Жгутиковые, или Н-антигены, локализуют­ся в локомоторном аппарате бактерий - их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу со­ставляют ЛПС. О-антиген проявляет термос­табильные свойства - он не разрушается при длительном кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

Капсулъные, или К-антигены, располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 "С. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi -антигена. Обнаружение этого ан­тигена или специфичных к нему антител име­ет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (на­пример, туберкулин). При взаимодействии со специфическими антителами токсины, фер­менты и другие биологически активные моле­кулы бактериального происхождения теряют свою активность. Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выра­женной иммуногенностью, чья биологическая активность играет ключевую роль в формиро­вании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует виру­лентные свойства микроорганизма и обеспечи­вает иммунитет к нему. Описываемые антиге­ны получили название протективных . Впервые протективный антиген был обнаружен в гнойном отделяемом карбункула, вызванного ба­циллой сибирской язвы. Это вещество являет­ся субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц - так называемого отечного и летального факторов.

Как понять результаты анализов. Диагностика и профилактика заболеваний Ирина Витальевна Милюкова

Анализы крови на антигены и антитела

Опухолевые маркеры

Антигеном называется вещество (чаще всего белковой природы), на которое иммунная система организма реагирует как на врага: распознает, что оно чужеродное, и делает все, чтобы его уничтожить.

Антигены расположены на поверхности всех клеток (то есть как бы «на виду») всех организмов – они имеются и у одноклеточных микроорганизмов, и на каждой клетке такого сложного организма, каким является человек.

Нормальная иммунная система в нормальном организме не считает собственные клетки врагами. Но когда какая-нибудь клетка становится злокачественной, то она приобретает новые антигены, благодаря которым иммунная система распознает – в данном случае – «изменницу» и вполне способна ее уничтожить. К сожалению, это возможно только в начальной стадии, так как злокачественные клетки очень быстро делятся, а иммунная система справляется только с ограниченным количеством врагов (это относится и к бактериям).

Антигены некоторых видов опухолей могут быть выявлены в крови даже, как предполагается, еще здорового человека. Такие антигены называются опухолевыми маркерами . Правда, эти анализы являются весьма дорогостоящими, и к тому же они не строго специфичны, то есть определенный антиген может присутствовать в крови при разных видах опухолей и даже необязательно опухолей.

В основном анализы на выявление антигенов делаются людям, у которых уже выявлена злокачественная опухоль, – благодаря анализам можно судить об эффективности лечения.

Альфа-фетопротеин (АФП)

Этот белок вырабатывается клетками печени плода, в связи с чем обнаруживается в крови беременных женщин и даже служит своего рода прогностическим признаком некоторых аномалий развития у плода.

В норме у всех остальных взрослых людей (кроме беременных женщин) он отсутствует в крови. Однако альфа-фетопротеин обнаруживается в крови у большинства людей со злокачественной опухолью печени (гепатомой), а также у некоторых больных со злокачественными опухолями яичников или яичек и, наконец, при опухоли эпифиза (шишковидной железы), которая чаще всего встречается у детей и молодых людей.

Высокая концентрация альфа-фетопротеина в крови беременной женщины свидетельствует о повышенной вероятности таких пороков развития у ребенка, как расщелина позвоночника, анэнцефалия и др., а также о риске самопроизвольного аборта или так называемой замершей беременности (когда плод погибает в утробе женщины). Однако концентрация альфа-фетопротеина повышается иногда и при многоплодной беременности.

Тем не менее этот анализ выявляет аномалии спинного мозга у плода в 80–85 % случаев, если делается на 16–18-й неделе беременности. Исследование, проведенное раньше 14-й недели и позже 21-й, дает гораздо менее точные результаты.

Низкая концентрация альфа-фетопротеинов крови беременных свидетельствует (наряду с другими маркерами) о возможности синдрома Дауна у плода.

Поскольку концентрация альфа-фетопротеина нарастает в течение беременности, слишком низкая или высокая концентрация его может объясняться очень просто, а именно: неправильным определением срока беременности.

Простат-специфический антиген (ПСА)

Концентрация ПСА в крови незначительно повышается при аденоме предстательной железы (примерно в 30–50 % случаев) и в большей степени – при раке предстательной железы. Правда, норма для содержания ПСА весьма условна – менее 5–6 нг/л. При повышении этого показателя более 10 нг/л рекомендуется провести дополнительное обследование для выявления (или исключения) рака предстательной железы.

Карциноэмбриональный антиген (КЭА)

Высокая концентрация этого антигена обнаруживается в крови многих людей, страдающих циррозом печени, неспецифическим язвенным колитом, а также в крови заядлых курильщиков. Тем не менее КЭА является опухолевым маркером, так как его часто выявляют в крови при раке толстой кишки, поджелудочной железы, молочной железы, яичника, шейки матки, мочевого пузыря.

Антиген СА-125

Концентрация этого антигена в крови повышается при различных заболеваниях яичников у женщин, очень часто – при раке яичника.

Антиген СА-15–3

Антиген СА-19–5

Повышенная концентрация этого антигена отмечается у большинства больных раком поджелудочной железы.

Бета2-микроглобулин

Этот белок является опухолевым маркером при множественной миеломной болезни.

Анализы на антитела

Антитела – это вещества, которые иммунная система вырабатывает для борьбы с антигенами. Антитела строго специфичны, то есть против определенного антигена действуют строго определенные антитела, поэтому их наличие в крови позволяет сделать вывод о том, с каким именно «врагом» борется организм. Иногда антитела (например, ко многим возбудителям инфекционных заболеваний), образованные в организме во время болезни, остаются уже навсегда. В подобных случаях врач на основании лабораторного исследования крови на те или иные антитела может определить, что человек в прошлом перенес то или иное заболевание. В других случаях – например, при аутоиммунных заболеваниях – в крови выявляются антитела против определенных собственных антигенов организма, на основании чего можно поставить точный диагноз.

Антитела к двухспиральной ДНК выявляются в крови почти исключительно при системной красной волчанке – системном заболевании соединительной ткани.

Антитела к ацетилхолиновым рецепторам обнаруживаются в крови при миастении. При нервно-мышечной передаче рецепторы «мышечной стороны» получают сигнал от «нервной стороны» благодаря веществу-посреднику (медиатору) – ацетилхолину. При миастении иммунная система атакует именно эти рецепторы, вырабатывая антитела против них.

Ревматоидный фактор обнаруживается у 70 % больных ревматоидным артритом.

Кроме того, ревматоидный фактор часто присутствует в крови при синдроме Шегрена, иногда – при хронических заболеваниях печени, некоторых инфекционных болезнях, изредка – у здоровых людей.

Антиядерные антитела обнаруживаются в крови при системной красной волчанке, синдроме Шегрена.

Антитела SS-B выявляются в крови при синдроме Шегрена.

Антинейтрофильные цитоплазматические антитела обнаруживаются в крови при гранулематозе Вегенера.

Антитела к внутреннему фактору обнаруживаются у большинства людей, страдающих пернициозной анемией (связанной с дефицитом витамина В12). Внутренний фактор – это особый белок, который образуется в желудке и который необходим для нормального всасывания витамина В12.

Антитела к вирусу Эпштейна–Барра выявляются в крови больных инфекционным мононуклеозом.

Анализы для диагностики вирусных гепатитов

Поверхностный антиген гепатита В (HbsAg) – входит в состав оболочки вируса гепатита В. Обнаруживается в крови людей, зараженных гепатитом В, в том числе у вирусоносителей.

Антиген «е» гепатита В (HBeAg) – присутствует в крови в период активного размножения вируса.

ДНК вируса гепатита В (HBV-DNA) – генетический материал вируса, тоже присутствует в крови в период активного размножения вируса. Содержание ДНК вируса гепатита В в крови уменьшается или сходит на нет по мере выздоровления.

IgM антитела – антитела против вируса гепатита А; обнаруживаются в крови при остром гепатите А.

IgG антитела – другой тип антител против вируса гепатита А; появляются в крови по мере выздоровления и остаются в организме пожизненно, обеспечивая иммунитет к гепатиту А. Наличие их в крови указывает на то, что в прошлом человек перенес данное заболевание.

Ядерные антитела гепатита В (HBcAb) – выявляются в крови человека, недавно зараженного вирусом гепатита В, а также в период обострения хронического гепатита В. Имеются также в крови вирусоносителей гепатита В.

Поверхностные антитела гепатита В (HBsAb) – антитела к поверхностному антигену вируса гепатита В. Иногда обнаруживаются в крови людей, полностью излечившихся от гепатита В.

Наличие HBsAb в крови свидетельствует об иммунитете к этому заболеванию. При этом, если в крови отсутствуют поверхностные антигены, значит, иммунитет возник не вследствие перенесенной болезни, а в результате вакцинации.

Антитела «е» гепатита В – появляются в крови по мере того, как вирус гепатита В перестает размножаться (то есть по мере выздоровления), одновременно исчезают «е»-антигены гепатита В.

Антитела к вирусам гепатита С присутствуют в крови большинства инфицированных им людей.

Анализы для диагностики ВИЧ-инфекции

Лабораторные исследования для диагностики ВИЧ-инфекции на ранних стадиях основаны на выявлении специальных антител и антигенов в крови. Наиболее широко применяется такой метод определения антител к вирусу, как иммуноферментный анализ (ИФА). Если при постановке ИФА получают положительный результат, то анализ выполняют еще 2 раза (с той же сывороткой).

В случае хотя бы одного положительного результата диагностика ВИЧ-инфекции продолжается более специфичным методом иммунного блотинга (ИБ), позволяющего выявить антитела к отдельным белкам ретровируса. Только после положительного результата этого анализа можно сделать заключение об инфицировании человека ВИЧ.

Из книги Болезни щитовидной железы. Выбор правильного лечения, или Как избежать ошибок и не нанести вреда своему здоровью автора Юлия Попова

Анализы крови Измерение тиреотропного гормона (ТТГ) ТТГ, вырабатываемый гипофизом, стимулирует образование и выброс в кровь гормонов щитовидной железы. Если уровень гормонов щитовидки уменьшается, уровень ТТГ увеличивается, и наоборот. Как видно, между количеством этих

Из книги Бронхиальная астма. Доступно о здоровье автора Павел Александрович Фадеев

Антитела к иммуноглобулину E Механизм действияПредставителем этой группы лекарственных препаратов является омализумаб, созданный при помощи методов генной инженерии.Омализумаб связывается с иммуноглобулином E и образовавшийся молекулярный комплекс уже не способен

Из книги Всё, что нужно знать о своих анализах. Самостоятельная диагностика и контроль за состоянием здоровья автора Ирина Станиславовна Пигулевская

Анализы крови Это самая большая группа исследований, которые проводятся в лабораториях. И самые часто назначаемые анализы. Конечно, нет смысла описывать их все, но знать нормы самых распространенных показателей крови полезно.Совет: иногда бывает так, что какой-либо

Из книги Ваш домашний доктор. Расшифровка анализов без консультации врача автора Д. В. Нестерова

Анализы крови на гормоны Это необходимый этап диагностики огромного количества заболеваний различных органов и систем. Гормональные анализы – наиболее востребованные в самых различных областях медицины.Гормоны – биологически активные вещества. В организме гормоны

Из книги Анализы. Полный справочник автора Михаил Борисович Ингерлейб

Антитела к тиреопероксидазе (АТ-ТПО, микросомальные антитела) Определение антител к тиреопероксидазе очень важно для выявления аутоиммунного поражения щитовидной железы. Фермент тиреоидная пероксидаза, находящийся в тканях железы, участвует в синтезе гормонов

Из книги Учимся понимать свои анализы автора Елена В. Погосян

Антитела к микросомальным антигенам (АТ-МАГ, антитела к микросомальной фракции тиреоцитов) При нарушениях иммунитета бывает, что организм начинает воспринимать клетки эпителия, окружающие фолликулы щитовидной железы, как чужеродные образования. Тогда в крови

Из книги Как понять результаты анализов. Диагностика и профилактика заболеваний автора Ирина Витальевна Милюкова

Анализы крови Кровь - это жидкая ткань организма, в состав которой входят плазма и взвешенные в ней форменные элементы. У здорового взрослого человека плазма крови составляет около 52–60 %, а форменные элементы - 40–48 %. В состав плазмы входят вода (90 %), растворенные в ней

Из книги Изоиммунизация при беременности автора Эдуард Карпович Айламазян

Аллоиммунные антитела Антитела к клинически наиболее важным эритроцитарным антигенам, в первую очередь – к резус-фактору.Показания к назначению анализа: беременность (профилактика резус-конфликта), наблюдение за беременными с отрицательным резус-фактором,

Из книги Болезни щитовидной железы. Лечение без ошибок автора Ирина Витальевна Милюкова

Антиспермальные антитела Антитела к антигенам сперматозоидов (антиспермальные антитела методом иммуноферментного анализа – ИФА) – дополнительный тест в диагностике иммунологических причин бесплодия у мужчин и женщин. Антиспермальные антитела обнаруживаются также

Из книги Женские недуги. Народные способы лечения автора Юрий Константинов

Антитела к тиреоглобулину Антитела к тиреоглобулину (АТ-ТГ, anti-thyroglobulin autoantibodies) – антитела к белку-предшественнику тиреоидных гормонов.Показания к назначению анализа: новорожденные: высокий уровень антител к тиреоглобулину у матери; взрослые: хронический тиреоидит

Из книги автора

Глава 4. Анемии и связанные с ними анализы крови, малокровие) - группа клинико-гематологических синдромов, общим моментом для которых является снижение концентрации гемоглобина в крови, чаще при одновременном уменьшении числа эритроцитов (или общего объема эритроцитов).

Из книги автора

Анализы крови Кровь (вместе с лимфой и тканевой жидкостью) относится к жидким тканям организма. Тканями называют группы клеток (вместе с расположенным между ними межклеточным веществом), имеющих сходное строение и выполняющих какие-то специфические функции. Все ткани

Из книги автора

Биохимические анализы крови Как мы уже говорили, биохимические анализы крови всегда назначаются «по случаю» – когда врач подозревает какое-то конкретное заболевание и состояние, и это подозрение может быть подтверждено или опровергнуто результатами анализа. Есть

Из книги автора

Антигены эритроцитов, их классификация, значение антигенов эритроцитов в патогенезе изоиммунизации На современном этапе развития иммуногематологии известно более 250 антигенов эритроцитов, которые принято распределять в 29 генетически независимых систем. Каждая

Из книги автора

Анализы крови Основным и наиболее чувствительным методом диагностики заболеваний щитовидной железы является определение уровня тиреотропного гормона (ТТГ), гормонов Т4 и Т3 в

Из книги автора

Анализы крови на гормоны При заболеваниях женской половой сферы сдают кровь на: лютеинизирующий гормон (ЛГ), фолликулостимулирующий гормон (ФСГ), эстрадиол, прогестерон, 17-ОH-прогестерон, пролактин.Также женщинам для углубленного анализа гормонального фона могут брать

Антигены - это высокомолекулярные вещества органического происхождения, способные при введении в организм вызывать образование специфических белков - . Антигены способны соединяться только с теми антителами, которые возникли под их воздействием. Антигенными свойствами обладают и (так называемые полноценные антигены). Антигены широко применяют в диагностике инфекционных заболеваний для определения природы антител. Антигены, используемые в этих целях, называют диагностикумами.

Помимо полноценных антигенов, способных вызывать образование антител и реагировать с ними, существуют и неполноценные - гаптены (чаще всего и липоиды), реагирующие с соответствующими антителами, но не способные вызывать их образование. Гаптены являются соединениями, придающими антигенам определенную специфичность. Гаптены превращаются в полноценные антигены при добавлении к ним белка. Некоторые неорганические соединения, в том числе лекарственные препараты ( , йод и др.), при поступлении в организм могут соединяться с его белками и приобретать антигенные свойства. По характеру иммунологической реакции антигены могут быть обозначены как агглютиногены, вызывающие образование антител, обусловливающих реакцию (см.); преципитиногены - антигены, вызывающие образование антител, участвующих в реакции (см.).

Антигены (от греч. anti - против и gennao - создаю, произвожу) - химические соединения, которые при введении в организм человека или животных вызывают образование антител. Антигенными свойствами обладает широкий круг природных высокомолекулярных соединений и в первую очередь белки, полисахариды (см. Vi-антиген) и их комплексы. Кроме того, антигенами могут быть искусственно синтезированные полипептиды, а также комплексы белков с самыми разнообразными по структуре химическими соединениями. При введении в организм таких конъюгированных соединений образуются антитела (см.), специфически реагирующие с введенной в белок простой химической группировкой, которая, будучи введена в организм без носителя, не вызывает образования антител. Подобные соединения из-за своей иммунологической пассивности получили название неполных антигенов, или гаптенов.

В настоящее время далеко не все еще известно об условиях антигенности того или иного вещества, однако, несомненно, что степень антигенности белков определяется некоторыми особенностями их химического строения, к числу которых следует отнести относительно высокий молекулярный вес. Действительно, относительно простые по составу и строению протамин и желатина не являются антигенами, а яичный и сывороточный альбумины (мол. масса 40 000-70 000) иммуногенны в меньшей степени, чем гамма-глобулины (мол. масса 160 000) или гемоцианин (мол. масса 300 000 и более). Непременным условием антигенности является отличие строения данного вещества от каких-либо веществ, присутствующих в организме реципиента. Собственные белки организма не являются антигенами, если они не были подвергнуты химической обработке, способной изменить их строение. В связи с генетическими отличиями особей одного и того же вида однотипные белки (например, гамма-глобулины) у них могут иметь определенные различия в строении. В связи с этим белок одного животного данного вида может быть антигеном для другого животного этого же вида. Подобные антигены называются изоантигенами.

При некоторых патологических состояниях собственные белки, полисахариды и их комплексы в результате изменения химического строения приобретают способность к аутоиммунизации. Такие аутоантигены известны при приобретенной гемолитической анемии, идиопатической тромбопенической пурпуре, узелковом периартериите, эритематозной волчанке и других заболеваниях.

В связи со сложным химическом строением природных белков и полисахаридов на поверхности их макромолекул находится значительное число антигенных детерминант различного строения. Антигенная гетерогенность индивидуальных белков и полисахаридов приводит при иммунизации к образованию большого набора антител разной специфичности (см. Иммунитет). Если у некоторых белков или полисахаридов различного происхождения отдельные антигенные детерминанты близки по своему строению, то образующиеся антитела будут перекрестно реагировать с обоими антигенами. Антигенное родство наряду со специфическими отличиями установлено для однотипных белков разных видов (сывороточных альбуминов, гамма-глобулинов) или соматических 0-антигенов бактерий кишечной группы. В ряде случаев одинаковые антигенные детерминанты встречаются у совершенно разных по происхождению веществ, например группоспецифических А-антигенов эротроцитов человека и капсульных полисахаридов пневмококка типа XIV. Серологически родственные клеточные антигены далеких друг от друга видов получили название гетерогенных антигенов. Примерами таких антигенов служат антигены Форсмана - вещества, которые при инъекции кроликам вызывают образование бараньих гемолизинов.

Природные антигены могут встречаться как в корпускулярной, так и растворимой форме. Поскольку первые исследуются с иммунной сывороткой в реакции агглютинации, они называются агглютиногенами. Соответственно растворимые антигены, анализируемые в реакции преципитации, иногда называют преципитиногенами. В корпускулярных антигенах бактериального происхождения различают антигены собственно тела клетки и жгутиковые антигены, представляющие по химическому строению белки. При наличии одинаковых по строению детерминант агглютиногены и преципитиногены могут иметь одну и ту же серологическую специфичность. Несмотря на серологическое родство, иммуногенная активность агглютиногенов и преципитиногенов различается: образование антител к агглютиногенам происходит, как правило, значительно интенсивнее.