Условные вероятности формула полной вероятности. Решение задач с помощью формулы полной вероятности и формулы байеса

На практике часто необходимо определить вероятность интересующего события, которое может произойти с одним из событий, образующих полную группу. Следующая теорема, являющаяся следствием теорем сложения и умножения вероятности, приводит к выводу важной формулы для вычисления вероятности подобных событий. Эта формула называется формулой полной вероятности.

Пусть H 1 , H 2 , … , H n есть n попарно несовместных событий, образующих полную группу:

1) все события попарно несовместны: H i H j = ; i , j = 1,2, … , n ; i j;

2) их объединение образует пространство элементарных исходов W:

Такие события иногда называют гипотезами. Пусть совершается событие А , которое может наступить только при условии наступления одного из событий H i (i = 1, 2, … , n ). Тогда справедлива теорема.

Доказательство. Действительно, по условию событие А может наступить, если наступает одно из несовместных событий H 1 , H 2 … H n , т.е. появление события А означает осуществление одного из событий H 1 ∙ А , H 2 ∙ А , … , H n ∙ А . Последние события также несовместны, т.к. из H i ∙ H j = (i j ) следует, что и (А H i) ∙ (А H j) = (i j ). Теперь заметим, что

Это равенство хорошо иллюстрируется рис. 1.19. Из теоремы сложения следует . Но по теореме умножения справедливо равенст-во при любом i, 1i n . Следовательно, фор-мула полной вероятности (1.14) справедлива. Теорема доказана.

Замечание. Вероятности событий (гипотез) H 1 , H 2 , … , H n , которые входят в формулу (1.14) при решении конкретных задач или заданы или же они должны быть вычислены в процессе решения. В последнем случае правильность вычисления р (H i) (i = 1, 2, … , n ) проверяется по соотношению = 1 и расчёт р (H i) выполняется на первом этапе решения задачи. На втором этапе рассчитывается р (А ).

При решении задач на применении формулы полной вероятности удобно придерживаться следующей методики.

Методика применения формулы полной вероятности

а). Ввести в рассмотрение событие (обозначим его А ), вероятность которого необходимо определить по условию задачи.

б). Ввести в рассмотрение события (гипотезы) H 1 , H 2 , … , H n , которые образуют полную группу.

в). Выписать или вычислить вероятности гипотез р (H 1), р (H 2), … , р (H n). Контроль правильности вычисления р (H i) проверяется по условию В большем числе задач вероятности р (H i) задаются непосредственно в условии задачи. Иногда эти вероятности, а также вероятности p (А /H 1), p (А /H 2), …, p (А /H n) умножены на 100 (заданы числа в процентах). В этом случае заданные числа надо поделить на 100.

г). Вычислить искомую вероятность р (А ) по формуле (1.14).

Пример . Экономист рассчитал, что вероятность роста стоимости акции его компании в следующем году составит 0,75, если экономика страны будет на подъёме, и 0,30, если будет финансовый кризис. По мнению экспертов, вероятность экономического подъёма равна 0,6. Оценить вероятность того, что акции компании в следующем году поднимутся в цене.

Решение. В начале условие задачи формализуется по вероятности. Пусть А – событие ” акции поднимутся в цене” (по вопросу задачи). По условию задачи выделяются гипотезы: H 1 – “экономика будет на подъёме”, H 2 – “экономика вступит в полосу кризиса”. H 1 , H 2 – образуют полную группу, т.е. H 1 ∙ H 2 = , H 1 + H 2 = . Вероятность p (H 1) = 0,6, следовательно, p (H 2) = 1 – 0,6 = 0,4. Условные вероятности p (А /H 1) = 0,75, p (А /H 2) = 0,3. Используя формулу (1.14), получим:

p (А ) = p (H 1) ∙ p (А /H 1) + p (H 2) ∙ p (А /H 2) = 0,75 ∙ 0,6 + 0,3 ∙ 0,4 = 0,57.

Формула полной вероятности позволяет найти вероятность события A , которое может наступить только с каждым из n исключающих друг друга событий , образующих полную систему, если известны их вероятности , а условные вероятности события A относительно каждого из событий системы равны .

События также называются гипотезами, они являются исключающими друг друга. Поэтому в литературе можно также встретить их обозначение не буквой B , а буквой H (hypothesis).

Для решения задач с такими условиями необходимо рассмотреть 3, 4, 5 или в общем случае n возможностей наступления события A - с каждым событий .

По теоремам сложения и умножения вероятностей получаем сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы. То есть, вероятность события A может быть вычислена по формуле

или в общем виде

,

которая и называется формулой полной вероятности .

Формула полной вероятности: примеры решения задач

Пример 1. Имеются три одинаковых на вид урны: в первой 2 белых шара и 3 чёрных, во второй - 4 белых и один чёрный, в третьей - три белых шара. Некто подходит наугад к одной из урн и вынимает из неё один шар. Пользуясь формулой полной вероятности , найти вероятность того, что этот шар будет белым.

Решение. Событие A - появление белого шара. Выдвигаем три гипотезы:

Выбрана первая урна;

Выбрана вторая урна;

Выбрана третья урна.

Условные вероятности события A относительно каждой из гипотез:

, , .

Применяем формулу полной вероятности, в результате - требуемая вероятность:

.

Пример 2. На первом заводе из каждых 100 лампочек производится в среднем 90 стандартных, на втором - 95, на третьем - 85, а продукция этих заводов составляет соответственно 50%, 30% и 20% всех электролампочек, поставляемых в магазины некоторого района. Найти вероятность приобретения стандартной электролампочки.

Решение. Обозначим вероятность приобретения стандартной электролампочки через A , а события, заключающиеся в том, что приобретённая лампочка изготовлена соответственно на первом, втором и третьем заводах, через . По условию известны вероятности этих событий: , , и условные вероятности события A относительно каждого из них: , , . Это вероятности приобретения стандартной лампочки при условии её изготовления соответственно на первом, втором, третьем заводах.

Событие A наступит, если произойдут или событие K - лампочка изготовлена на первом заводе и стандартна, или событие L - лампочка изготовлена на втором заводе и стандартна, или событие M - лампочка изготовлена на третьем заводе и стандартна. Других возможностей наступления события A нет. Следовательно, событие A является суммой событий K , L и M , которые являются несовместимыми. Применяя теорему сложения вероятностей, представим вероятность события A в виде

а по теореме умножения вероятностей получим

то есть, частный случай формулы полной вероятности .

Подставив в левую часть формулы значения вероятностей, получаем вероятность события A :

Пример 3. Производится посадка самолёта на аэродром. Если позволяет погода, лётчик сажает самолёт, пользуясь, помимо приборов, ещё и визуальным наблюдением. В этом случае вероятность благополучной посадки равна . Если аэродром затянут низкой облачностью, то лётчик сажает самолёт, ориентируясь только по приборам. В этом случае вероятность благополучной посадки равна ; . Приборы, обеспечивающие слепую посадку, имеют надёжность (вероятность безотказной работы) P . При наличии низкой облачности и отказавших приборах слепой посадки вероятность благополучной посадки равна ; . Статистика показывает, что в k % случаев посадки аэродром затянут низкой облачностью. Найти полную вероятность события A - благополучной посадки самолёта.

Решение. Гипотезы:

Низкой облачности нет;

Низкая облачность есть.

Вероятности этих гипотез (событий):

;

Условная вероятность .

Условную вероятность снова найдём по формуле полной вероятности с гипотезами

Приборы слепой посадки действуют;

Приборы слепой посадки отказали.

Вероятности этих гипотез:

По формуле полной вероятности

Пример 4. Прибор может работать в двух режимах: нормальном и ненормальном. Нормальный режим наблюдается в 80% всех случаев работы прибора, а ненормальный - в 20% случаев. Вероятность выхода прибора из строя за определённое время t равна 0,1; в ненормальном 0,7. Найти полную вероятность выхода прибора из строя за время t .

Решение. Вновь обозначаем вероятность выхода прибора из строя через A . Итак, относительно работы прибора в каждом режиме (события ) по условию известны вероятности: для нормального режима это 80% (), для ненормального - 20% (). Вероятность события A (то есть, выхода прибора из строя) в зависимости от первого события (нормального режима) равна 0,1 (); в зависимости от второго события (ненормального режима) - 0,7 (). Подставляем эти значения в формулу полной вероятности (то есть, сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы) и перед нами - требуемый результат.

Составитель преподаватель кафедры высшей математики Ищанов Т.Р. Занятие №4. Формула полной вероятности. Вероятность гипотез. Формулы Байеса.

Теоретический материал
Формула полной вероятности
Теорема. Вероятность события А, которое может наступить лишь при условии появления одного из несовместных событий , образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

.
Эту формулу называют «формулой полной вероятности».

Доказательство. По условию, событие А может наступить, если наступит одно из несовместных событий . Другими словами, появление события А означает осуществление одного, безразлично какого, из несовместных событий . Пользуясь для вычисления вероятности события А теоремой сложения, получим
. (*)
Остается вычислить каждое из слагаемых. По теореме умножения вероятностей зависимых событий имеем
.
Подставив правые части этих равенств в соотношение (*), получим формулу полной вероятности

Пример 1. Имеется два набора деталей. Вероятность того, что деталь первого набора стандартна, равна 0,8, а второго-0,9. Найти вероятность того, что взятая наудачу деталь (из наудачу взятого набора) - стандартная.
Решение. Обозначим через А событие «извлеченная деталь стандартна».
Деталь может быть извлечена либо из первого набора (событие ), либо из второго (событие ).
Вероятность того, что деталь вынута из первого набора, .
Вероятность того, что деталь вынута из второго набора, .
Условная вероятность того, что из первого набора будет извлечена стандартная деталь, .
Условная вероятность того, что из второго набора будет извлечена стандартная деталь .
Искомая вероятность того, что извлеченная наудачу деталь - стандартная, по формуле полной вероятности равна

Пример 2. В первой коробке содержится 20 радиоламп, из них 18 стандартных; во второй коробке-10 ламп, из них 9 стандартных. Из второй коробки наудачу взята лампа и переложена в первую. Найти вероятность того, что лампа, наудачу извлеченная из первой коробки, будет стандартной.
Решение. Обозначим через А событие «из первой коробки извлечена стандартная лампа».
Из второй коробки могла быть извлечена либо стандартная лампа (событие ), либо нестандартная (событие ).
Вероятность того, что из второй коробки извлечена стандартная лампа, .
Вероятность того, что из второй коробки извлечена нестандартная лампа,
Условная вероятность того, что из первой коробки извлечена стандартная лампа, при условии, что из второй коробки в первую была переложена стандартная лампа, равна .
Условная вероятность того, что из первой коробки извлечена стандартная лампа, при условии, что из второй коробки в первую была переложена нестандартная лампа, равна .
Искомая вероятность того, что из первой коробки будет извлечена стандартная лампа, по формуле полной вероятности равна

Вероятность гипотез. Формулы Байеса

Пусть событие A может наступить при условии появления одного из несовместных событий , образующих полную группу. Поскольку заранее не известно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события A определяется по формуле полной вероятности:

Допустим, что произведено испытание, в результате которого появилось событие А. Поставим своей задачей определить, как изменились (в связи с тем, что событие А уже наступило) вероятности гипотез. Другими словами, будем искать условные вероятности

Найдем сначала условную вероятность . ПО теореме умножения имеем

.

Заменив здесь Р (А) по формуле (*), получим

Аналогично выводятся формулы, определяющие условные вероятности остальных гипотез, т. е. условная вероятность любой гипотезы может быть вычислена по формуле

Полученные формулы называют формулами Байеса (по имени английского математика, который их вывел; опубликованы в 1764 г.). Формулы Бейеса позволяют переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.

Пример. Детали, изготовляемые цехом завода, попадают для проверки их на стандартность к одному из двух контролеров. Вероятность того, что деталь попадает к первому контролеру, равна 0,6, а ко второму - 0,4. Вероятность того, что годная деталь будет признана стандартной первым контролером, равна 0,94, а вторым-0,98. Годная деталь при проверке была признана стандартной. Найти вероятность того, что эту деталь проверил первый контролер.
Решение. Обозначим через А событие, состоящее в том, что годная деталь признана стандартной. Можно сделать два предположения:
1)деталь проверил первый контролер (гипотеза );
2)деталь проверил второй контролер (гипотеза ). Искомую вероятность того, что деталь проверил первый контролер, найдем по формуле Байеса:

По условию задачи имеем:
(вероятность того, что деталь попадает к первому контролеру);
(вероятность того, что деталь попадет ко второму контролеру);
(вероятность того, что годная деталь будет признана первым контролером стандартной);
(вероятность того, что годная деталь будет признана вторым контролером стандартной).
Искомая вероятность

Как видно, до испытания вероятность гипотезы равнялась 0,6, после того, как стал известен результат испытания, вероятность этой гипотезы (точнее, условная вероятность) изменилась и стала равной 0,59. Таким образом, использование формулы Байеса позволило переоценить вероятность рассматриваемой гипотезы.

Практический материал.
1. (4) Сборщик получил 3 коробки деталей, изготовленных заводом № 1, и 2 коробки деталей, изготовленных заводом № 2. Вероятность того, что деталь завода № 1 стандартна, равна 0,8, а завода № 2 - 0,9, Сборщик наудачу извлек деталь из наудачу взятой коробки. Найти вероятность того, что извлечена стандартная деталь.
Отв. 0,84.
2. (5) В первом ящике содержится 20 деталей, из них 15 стандартных; во втором-30 деталей, из них 24 стандартных; в третьем - 10 деталей, из них 6 стандартных. Найти вероятность того, что наудачу извлеченная деталь из наудачу взятого ящика-стандартная.
Отв. 43/60.
3. (6) В телевизионном ателье имеется 4 кинескопа. Вероятности того, что кинескоп выдержит гарантийный срок службы, соответственно равны 0,8; 0,85; 0,9; 0,95. Найти вероятность того, что взятый наудачу кинескоп выдержит гарантийный срок службы.
Отв. 0,875.
4. (3) В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятность выполнить квалификационную норму такова: для лыжника-0,9, для велосипедиста-0,8. и для бегуна-0,75. Найти вероятность того, что спортсмен, выбранный наудачу, выполнит норму.
Отв. 0,86.
5. (С) В белом ящике 12 красных и 6 синих шаров. В черном – 15 красных и 10 синих шаров. Бросают игральный кубик. Если выпадет количество очков, кратное 3, то наугад берут шар из белого ящика. Если выпадет любое другое количество очков, то наугад берут шар из черного ящика. Какова вероятность появления красного шара?
Решение :
Возможны две гипотезы:
– при бросании кубика выпадет количество очков, кратное 3, т.е. или 3 или 6;
– при бросании кубика выпадет другое количество очков, т.е. или 1 или 2 или 4 или 5.
По классическому определению вероятности гипотез равны:

Поскольку гипотезы составляют полную группу событий, то должно выполняться равенство

Пусть событие А состоит в появлении красного шара. Условные вероятности этого события зависят от того, какая именно гипотеза реализовалась, и составляют соответственно:

Тогда по формуле полной вероятности вероятность события А будет равна:

6. (7) В двух ящиках имеются радиолампы. В первом ящике содержится 12 ламп, из них 1 нестандартная; во втором 10 ламп, из них 1 нестандартная. Из первого ящика наудачу взята лампа и переложена во второй. Найти вероятность того, что наудачу извлеченная из второго ящика лампа будет нестандартной.
Отв. 13/132.

7. (89 Г) В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).
Решение. Обозначим через А событие – извлечен белый шар. Возможны следующие предположения (гипотезы) о первоначальном составе шаров: - белых шаров нет, - один белый шар, - два белых шара.
Поскольку всего имеется три гипотезы, причем по условию они равновероятны, и сумма вероятностей гипотез равна единице (так как они образуют полную группу событий), то вероятность каждой из гипотез равна 1/3, т.е. .
Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне не было белых шаров, .
Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне был один белый шар, .
Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне было два белых шара .
Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:

8. (10) В ящик, содержащий 3 одинаковых детали, брошена стандартная деталь, а затем наудачу извлечена одна деталь. Найти вероятность того, что извлечена стандартная деталь, если равновероятны все возможные предположения о числе стандартных деталей, первоначально находящихся в ящике.
Отв. 0,625 .

9. (6.5.2Л) Для улучшения качества радиосвязи используются два радиоприемника. Вероятность приема сигнала каждым приемником равна 0,8, и эти события (прием сигнала приемником) независимы. Определить вероятность приема сигнала, если вероятность безотказной работы за время сеанса радиосвязи для каждого приемника равна 0,9.
Решение.
Пусть событие А={сигнал будет принят}. Рассмотрим четыре гипотезы:

={первый приемник работает, второй - нет};

={второй работает, первый - нет};

={оба приемника работают};

={оба приемника не работают}.

Событие А может произойти только с одной из этих гипотез. Найдем вероятность этих гипотез, рассматривая следующие события:

={первый приемник работает},

={второй приемник работает}.

Контроль:

.

Условные вероятности соответственно равны:

;

;

Теперь по формуле полной вероятности находим искомую вероятность

10. (11) При отклонении от нормального режима работы автомата срабатывает сигнализатор С-1 с вероятностью 0,8, а сигнализатор С-11 срабатывает с вероятностью 1. Вероятности того, что автомат снабжен сигнализатором С-1 или С-11, соответственно равны 0,6 и 0,4. Получен сигнал о разделке автомата. Что вероятнее: автомат снабжен сигнализатором С-1 или С-11?
Отв. Вероятность того, что автомат снабжен сигнализатором С-1, равна 6/11, а С- 11- 5/11

11. (12) Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы курса 4, из второй - 6, из третьей группы - 5 студентов. Вероятности того, что студент первой, второй и третьей группы попадает в сборную института, соответственно равны 0,9; 0,7 и 0,8. Наудачу выбранный студент в итоге соревнования попал в сборную. К какой из групп вероятнее всего принадлежал этот студент?
Отв. Вероятности того, что выбран студент первой, второй, третьей групп, соответственно равны: 18/59, 21/59, 20/59.

12. (1.34К) В торговую фирму поступили телевизоры от трех поставщиков в отношении 1:4:5. Практика показала, что телевизоры, поступающие от 1-го, 2-го и 3-го поставщиков, не потребуют ремонта в течении гарантийного срока соответственно в 98, 88 и 92% случаев.
1) Найти вероятность того, что поступивший в торговую фирму телевизор не потребует ремонта в течение гарантийного срока.
2) Проданный телевизор потребовал ремонта в течение гарантийного срока. От какого поставщика вероятнее всего поступил этот телевизор?
Решение.
Обозначим события: - телевизор поступил в торговую фирму от i-го поставщика (i=1,2,3);
A – телевизор не потребует ремонта в течение гарантийного срока.
По условию

По формуле полной вероятности

Событие телевизор потребует ремонта в течение гарантийного срока; .
По условию

По формуле Байеса

;

Таким образом, после наступления события вероятность гипотезы увеличилась с до максимальной , а гипотезы - уменьшилась от максимальной до ; если ранее (до наступления события А) наиболее вероятной была гипотеза , то теперь, в свете новой информации (наступления события А), наиболее вероятна гипотеза -поступление данного телевизора от 2-го поставщика.

13. (1.35К) Известно, что в среднем 95% выпускаемой продукции удовлетворяют стандарту. Упрощенная схема контроля признает пригодной продукцию с вероятностью 0,98, если она стандартна, и с вероятностью 0,06, если она нестандартна. Определить вероятность того, что:
1) взятое наудачу изделие пройдет упрощенный контроль;
2) изделие стандартное, если оно: а) прошло упрощенный контроль; б) дважды прошло упрощенный контроль.
Решение.
1). Обозначим события:
- взятое наудачу изделие соответственно стандартное или нестандартное;
- изделие прошло упрощенный контроль.

По условию

Вероятность того, что взятое наудачу изделие пройдет упрощенный контроль, по формуле полной вероятности:

2, а). Вероятность того, что изделие, прошедшее упрощенный контроль, стандартное, по формуле Байеса:

2, б). Пусть событие - изделие дважды прошло упрощенный контроль. Тогда по теореме умножения вероятностей:

По формуле Байеса

очень мала, то гипотезу о том, что изделие, дважды прошедшее упрощенный контроль, нестандартное, следует отбросить как практически невозможное событие.

14. (1.36К) Два стрелка независимо друг от друга стреляют по мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,8; для второго – 0,4. После стрельбы в мишени обнаружена одна пробоина. Какова вероятность того, что она принадлежит:
а) 1-му стрелку;
б) 2-му стрелку?
Решение.
Обозначим события:

Оба стрелка не попали в мишень;

Оба стрелка попали в мишень;

1-й стрелок попал в мишень, 2-й нет;

1-й стрелок не попал в мишень, 2-й попал;

В мишени одна пробоина (одно попадание).

Следствием обеих основных теорем – теоремы сложения вероятностей и теоремы умножения вероятностей – является так называемая формула полной вероятности.

Пусть требуется определить вероятность некоторого события , которое может произойти вместе с одним из событий:

образующих полную группу несовместных событий. Будем эти события называть гипотезами.

Докажем, что в этом случае

, (3.4.1)

т.е. вероятность события вычисляется как сумма произведений вероятности каждой гипотезы на вероятность события при этой гипотезе.

Формула (3.4.1) носит название формулы полной вероятности.

Доказательство. Так как гипотезы образуют полную группу, то событие может появиться только в комбинации с какой-либо из этих гипотез:

Так как гипотезы несовместны, то и комбинации также несовместны; применяя к ним теорему сложения, получим:

Применяя к событию теорему умножения, получим:

,

что и требовалось доказать.

Пример 1. Имеются три одинаковые на вид урны; в первой урне два белых и один черный шар; во второй – три белых и один черный; в третьей – два белых и два черных шара. Некто выбирает наугад одну из урн и вынимает из нее шар. Найти вероятность того, что этот шар белый.

Решение. Рассмотрим три гипотезы:

Выбор первой урны,

Выбор второй урны,

Выбор третьей урны

и событие – появление белого шара.

Так как гипотезы, по условию задачи, равновозможные, то

.

Условные вероятности события при этих гипотезах соответственно равны:

По формуле полной вероятности

.

Пример 2. По самолету производится три одиночных выстрела. Вероятность попадания при первом выстреле равна 0,4, при втором – 0,5, при третьем 0,7. Для вывода самолета из строя заведомо достаточно трех попаданий; при одном попадании самолет выходит из строя с вероятностью 0,2, при двух попаданиях – с вероятностью 0,6. Найти вероятность того, что в результате трех выстрелов самолет будет выведен из строя.

Решение. Рассмотрим четыре гипотезы:

В самолет не попало ни одного снаряда,

В самолет попал один снаряд,

В самолет попало два снаряда,

В самолет попало три снаряда.

Пользуясь теоремами сложения и умножения, найдем вероятности этих гипотез:

Условные вероятности события (выход самолета из строя) при этих гипотезах равны:

Применяя формулу полной вероятности, получим:

Заметим, что первую гипотезу можно было бы и не вводить в рассмотрение, так как соответствующий член в формуле полной вероятности обращается в нуль. Так обычно и поступают при применении формулы полной вероятности, рассматривая не полную группу несовместных гипотез, а только те из них, при которых данное событие возможно.

Пример 3. Работа двигателя контролируется двумя регуляторами. Рассматривается определенный период времени , в течение которого желательно обеспечить безотказную работу двигателя. При наличии обоих регуляторов двигатель отказывается с вероятностью , при работе только первого из них – с вероятностью , при работе только второго - , при отказе обоих регуляторов – с вероятностью . Первый из регуляторов имеет надежность , второй - . Все элементы выходят из строя независимо друг от друга. Найти полную надежность (вероятность безотказной работы) двигателя.