Механизм действия антагонистов ангиотензиновых рецепторов. Сартаны: действие, применение, перечень препаратов, показания и противопоказания. Побочные эффекты от приема блокаторов

Ангиотензин – это пептидный гормон, который вызывает сужение кровеносных сосудов (вазоконстрикцию), повышение артериального давления, а также высвобождение альдостерона из коры надпочечников в кровеносное русло.

Ангиотензин играет значимую роль в ренин-ангиотензин-альдостероновой системе, которая является главной целью лекарственных средств, снижающих артериальное давление.

Основной механизм действия антагонистов рецепторов ангиотензина 2 связан с блокадой АТ 1 -рецепторов, за счет чего устраняется неблагоприятное воздействие ангиотензина 2 на тонус сосудов и нормализуется повышенное артериальное давление.

Уровень ангиотензина в крови повышается при почечной гипертензии и новообразованиях почек, продуцирующих ренин, а понижается при обезвоживании организма, синдроме Конна и удалении почки.

Синтез ангиотензина

Предшественником ангиотензина является ангиотензиноген – белок класса глобулинов, который относится к серпинам и вырабатывается преимущественно печенью.

Выработка ангиотензина 1 происходит под влиянием на ангиотензиноген ренина. Ренин – протеолитический фермент, который относится к наиболее значимым почечным факторам, принимающим участие в регуляции артериального давления, при этом сам он прессорными свойствами не обладает. Ангиотензин 1 также не обладает вазопрессорной активностью и быстро превращается в ангиотензин 2, который является наиболее мощным из всех известных прессорных факторов. Превращение ангиотензина 1 в ангиотензин 2 происходит за счет удаления С-концевых остатков под воздействием ангиотензинпревращающего фермента, который присутствует во всех тканях организма, однако больше всего синтезируется в легких. Последующее расщепление ангиотензина 2 обусловливает образование ангиотензина 3 и ангиотензина 4.

Помимо этого, способностью образовывать ангиотензин 2 из ангиотензина 1 обладают тонин, химазы, катепсин G и другие сериновые протеазы, что является так называемым альтернативным путем образования ангиотензина 2.

Ренин-ангиотензин-альдостероновая система

Ренин-ангиотензин-альдостероновая система – это гормональная система, которая обеспечивает регуляцию артериального давления и объема циркулирующей в организме крови.

Лекарственные средства, действующие путем блокады ангиотензиновых рецепторов, были созданы в ходе изучения ингибиторов ангиотензина 2, которые способны блокировать его образование или действие и таким образом снижать активность ренин-ангиотензин-альдостероновой системы.

Ренин-ангиотензин-альдостероновый каскад начинается с синтеза препроренина путем трансляции рениновой мРНК в юкстагломерулярных клетках афферентных артериол почек, где из препроренина, в свою очередь, образуется проренин. Значительная часть последнего путем экзоцитоза выбрасывается в кровоток, однако часть проренина превращается в ренин в секреторных гранулах юкстагломерулярных клеток, затем также выделяясь в кровеносное русло. По этой причине в норме объем циркулирующего в крови проренина значительно выше концентрации активного ренина. Контроль выработки ренина является определяющим фактором активности ренин-ангиотензин-альдостероновой системы.

Ренин регулирует синтез ангиотензина 1, не обладающего биологической активностью и выступающего прекурсором ангиотензина 2, служащего сильным вазоконстриктором прямого действия. Под его влиянием происходит сужение кровеносных сосудов и последующее повышение кровяного давления. Также он имеет протромботический эффект – регулирует адгезию и агрегацию тромбоцитов. Кроме того, ангиотензин 2 потенциирует высвобождение норадреналина , повышает выработку адренокортикотропного гормона и антидиуретического гормона, способен вызывать чувство жажды. За счет повышения давления в почках и сужения эфферентных артериол ангиотензин 2 увеличивает скорость гломерулярной фильтрации.

Ангиотензин 2 оказывает свое действие на клетки организма через рецепторы ангиотензина (АТ-рецепторы) разных типов. Наибольшее сродство ангиотензин 2 имеет к АТ 1 -рецепторам, которые локализуются преимущественно в гладкой мускулатуре кровеносных сосудов, сердце, некоторых областях мозга, печени, почках, коре надпочечников. Период полураспада ангиотензина 2 составляет 12 минут. Ангиотензин 3, формирующийся из ангиотензина 2, обладает 40% его активности. Период полураспада ангиотензина 3 в кровотоке составляет примерно 30 секунд, в тканях организма – 15–30 минут. Ангиотензин 4 является гексопептидом и схож по своим свойствам с ангиотензином 3.

Продолжительное повышение концентрации ангиотензина 2 приводит к уменьшению чувствительности клеток к инсулину с высоким риском развития сахарного диабета второго типа.

Ангиотензин 2 и внеклеточный уровень ионов калия относятся к наиболее значимым регуляторам альдостерона, который является важным регулятором баланса калия и натрия в организме и играет значимую роль в контроле объема жидкостей. Он увеличивает реабсорбцию воды и натрия в дистальных извитых канальцах, собирательных трубках, слюнных и потовых железах, толстом кишечнике, вызывая экскрецию ионов калия и водорода. Повышенная концентрация альдостерона в крови приводит к задержке в организме натрия и усиленному выделению калия с мочой, то есть к снижению уровня данного микроэлемента в сыворотке крови (гипокалиемия).

Повышенный уровень ангиотензина

При длительном увеличении концентрации ангиотензина 2 в крови и тканях повышается образование коллагеновых волокон и развивается гипертрофия гладкомышечных клеток кровеносных сосудов. В результате стенки кровеносных сосудов утолщаются, уменьшается их внутренний диаметр, что приводит к повышению артериального давления . Помимо этого, происходит истощение и дистрофия клеток сердечной мышцы с их последующей гибелью и замещением соединительной тканью, что является причиной развития сердечной недостаточности .

Длительный спазм и гипертрофия мышечного слоя кровеносных сосудов обусловливают ухудшение кровоснабжения органов и тканей, в первую очередь головного мозга, сердца, почек, зрительного анализатора. Продолжительный недостаток кровоснабжения почек приводит к их дистрофии, нефросклерозу и формированию почечной недостаточности. При недостаточном кровоснабжении головного мозга наблюдаются нарушения сна, эмоциональные расстройства, снижение интеллекта, памяти, шум в ушах, головная боль, головокружение и пр. Ишемия сердца может осложняться стенокардией , инфарктом миокарда . Недостаточное кровоснабжение сетчатки глаза приводит к прогрессирующему снижению остроты зрения.

Ренин регулирует синтез ангиотензина 1, не обладающего биологической активностью и выступающего прекурсором ангиотензина 2, служащего сильным вазоконстриктором прямого действия.

Продолжительное повышение концентрации ангиотензина 2 приводит к уменьшению чувствительности клеток к инсулину с высоким риском развития сахарного диабета второго типа.

Блокаторы ангиотензина 2

Блокаторы ангиотензина 2 (антагонисты ангиотензина 2) – это группа лекарственных средств, снижающих артериальное давление.

Лекарственные средства, действующие путем блокады ангиотензиновых рецепторов, были созданы в ходе изучения ингибиторов ангиотензина 2, которые способны блокировать его образование или действие и таким образом снижать активность ренин-ангиотензин-альдостероновой системы. К таким веществам относятся ингибиторы синтеза ринина, ингибиторы образования ангиотензиногена, ингибиторы ангиотензинпревращающего фермента, антагонисты ангиотензиновых рецепторов и пр.

Блокаторы (антагонисты) рецепторов ангиотензина 2 – это группа гипотензивных лекарственных средств, которая объединяет препараты, модулирующие функционирование ренин-ангиотензин-альдостероновой системы через взаимодействие с ангиотензиновыми рецепторами.

Основной механизм действия антагонистов рецепторов ангиотензина 2 связан с блокадой АТ 1 -рецепторов, за счет чего устраняется неблагоприятное воздействие ангиотензина 2 на тонус сосудов и нормализуется повышенное артериальное давление. Прием препаратов данной группы обеспечивает продолжительный антигипертензивный и органопротекторный эффект.

В настоящее время продолжаются клинические исследования, посвященные изучению эффективности и безопасности блокаторов рецепторов ангиотензина 2.

Видео с YouTube по теме статьи:

    В настоящее время наиболее хорошо изучены два типа рецепторов к ангиотензину II, выполняющие различные функции, - ангиотензиновые рецепторы-1 и – 2. .

    Ангиотензиновые рецепторы-1 локализованы в сосудистой стенке, надпочечниках, печени.

    Эффекты, опосредуемые ангиотензиновыми рецепторами-1 :
    • Вазоконстрикция.
    • Стимуляция синтеза и секреции альдостерона.
    • Канальцевая реабсорбция натрия.
    • Снижение почечного кровотока.
    • Пролиферация гладких мышечных клеток.
    • Гипертрофия сердечной мышцы.
    • Усиление высвобождения норадреналина.
    • Стимуляция высвобождения вазопрессина.
    • Торможение образования ренина.

    Ангиотензиновые рецепторы-2 представлены в ЦНС, эндотелии сосудов, надпочечниках, репродуктивных органах (яичниках, матке). Количество ангиотензиновых рецепторов-2 в тканях непостоянно: их число резко увеличивается при повреждении тканей и активации репаративных процессов.

    Эффекты, опосредуемые ангиотензиновыми рецепторами-2 :
    • Вазодилатация.
    • Натрийуретическое действие.
    • Высвобождение NO и простациклина.
    • Антипролиферативное действие.
    • Стимуляция апоптоза.

    Антагонисты рецепторов ангиотензина II отличаются высокой степенью селективности к ангиотензиновым рецепторам-1 (соотношение показателей селективности к ангиотензиновым рецепторам-1 и - 2 составляет 10000-30000:1). Препараты этой группы блокируют ангиотензиновые рецепторы-1.

    В результате на фоне применения антагонистов рецепторов ангиотензина II повышаются уровни ангиотензина II и наблюдается стимуляция ангиотензиновых рецепторов-2.

    По химическому строению антагонисты рецепторов ангиотензина II можно разделить на 4 группы:

    • Бифениловые производные тетразола (лозартан, кандесартан, ирбесартан).
    • Небифениловые производные тетразола (телмисартан).
    • Небифениловые нететразолы (эпросартан).
    • Негетероциклические производные (валсартан).

    Большинство препаратов этой группы (например, ирбесартан, кандесартан, лозартан, телмисартан) являются неконкурентными антагонистами рецепторов ангиотензина II. Эпросартан - единственный конкурентный антагонист, действие которого преодолимо высоким уровнем ангиотензина II в крови.

    Антагонисты рецепторов ангиотензина II обладают гипотензивным, антипролиферативным и натрийуретическим действиями .

    Механизм гипотензивного действия антагонистов рецепторов ангиотензина II заключается в устранении вазоконстрикции, вызванной ангиотензином II, снижении тонуса симпато-адреналовой системы, усилении экскреции натрия. Практически все препараты этой группы проявляют гипотензивный эффект при приеме 1р/сут и позволяют контролировать АД с течение 24 ч.

    Так, начало гипотензивного действия валсартана отмечается в пределах 2 ч., максимум - 4–6 ч. после приема внутрь. После приема препарата антигипертензивное действие сохраняется более 24 ч. Максимальный терапевтический эффект развивается через 2–4 нед. от начала лечения и сохраняется при длительной терапии.

    Начало антигипертензивного действия кандесартана после приема первой дозы развивается в течение 2 ч. В ходе продолжающейся терапии препаратом в фиксированной дозе максимальное снижение АД обычно достигается в течение 4 недель и в дальнейшем на фоне лечения сохраняется.

    На фоне приема телмисартана максимальный гипотензивный эффект обычно достигается через 4-8 недель после начала лечения.

    Фармакологически антагонисты рецепторов ангиотензина II различаются по степени сродства к ангиотензиновым рецепторам, что влияет на продолжительность их действия. Так, у лозартана этот показатель составляет примерно 12 ч, у валсартана – около 24 ч, у телмисартана – более 24 ч.

    Антипролиферативное действие антагонистов рецепторов ангиотензина II обусловливает органопротективные (кардио- и ренопротективный) эффекты этих препаратов.

    Кардиопротективный эффект реализуется путем регресса гипертрофии миокарда и гиперплазии мускулатуры сосудистой стенки, а также за счет улучшения функционального состояния эндотелия сосудов.

    Ренопротективный эффект, оказываемый на почки препаратами этой группы, близок к таковому ингибиторов АПФ, однако отмечаются и некоторые отличия. Так, антагонисты рецепторов ангиотензина II, в отличие от ингибиторов АПФ, оказывают менее выраженное влияние на тонус выносящих артериол, усиливают почечный кровоток и не влияют на скорость клубочковой фильтрации.

    К основным отличиям фармакодинамики антагонистов рецепторов ангиотензина II и ингибиторов АПФ относятся:

    • При назначении антагонистов рецепторов ангиотензина II наблюдается более выраженное устранение биологических эффектов ангиотензина II в тканях, чем на фоне применения ингибиторов АПФ.
    • Стимулирующее влияние ангиотензина II на ангиотензиновые рецепторы-2 усиливает вазодилатирующий и антипролиферативный эффекты антагонистов рецепторов ангиотензина II.
    • Со стороны антагонистов рецепторов ангиотензина II отмечается более мягкое влияние на почечную гемодинамику, чем на фоне применения ингибиторов АПФ.
    • При назначении антагонистов рецепторов ангиотензина II отсутствуют нежелательные эффекты, связанные с активацией кининовой системы.

    Ренопротективное действие препаратов этой группы проявляется также уменьшением микроальбуминурии у больных с артериальной гипертензией и диабетической нефропатией.

    Ренопротективные эффекты антагонистов рецепторов ангиотензина II наблюдаются при использовании их в меньших дозах, чем дозы, дающие гипотензивный эффект. Это может иметь дополнительное клиническое значение у больных с тяжелой формой хронической почечной недостаточности или сердечной недостаточности.

    Натрийуретическое действие антагонистов рецепторов ангиотензина II связано с блокадой ангиотензиновых рецепторов-1, регулирующих реабсорбцию натрия в дистальных канальцах почек. Поэтому на фоне применения препаратов этой группы экскреция натрия с мочой усиливается.

    Соблюдение диеты с низким содержанием поваренной соли потенцирует почечные и нейрогуморальные эффекты антагонистов рецепторов ангиотензина II: более значительно уменьшается уровень альдостерона, нарастает содержание ренина в плазме, наблюдается стимуляция натрийуреза на фоне неизмененной скорости клубочковой фильтрации. При повышенном поступлении в организм поваренной соли эти эффекты ослабевают.

    Фармакокинетические параметры антагонистов рецепторов ангиотензина II опосредованы липофильностью этих препаратов. Лозартан является наиболее гидрофильным, а телмисартан – наиболее липофильным среди препаратов этой группы.

    В зависимости от липофильности меняется объем распределения антагонистов рецепторов ангиотензина II. У телмисартана этот показатель наибольший.

    Антагонисты рецепторов ангиотензина II различаются по своим фармакокинетическим характеристикам: биодоступности, периоду полувыведения, метаболизму.

    Валсартан, лозартан, эпросартан характеризуются низкой и вариабельной биодоступностью (10-35%). У антагонистов рецепторов ангиотензина II последнего поколения (кандесартан, телмисартан) биодоступность (50-80%) более высокая.

    После приема внутрь препаратов антагонистов рецепторов ангиотензина II максимальные концентрации этих препаратов в крови достигаются через 2 ч. При длительном регулярном применении стационарная, или равновесная, концентрация устанавливается через 5-7 дней.

    Для антагонистов рецепторов ангиотензина II характерна высокая степень связывания с белками плазмы (более 90%), преимущественно альбуминами, частично с α 1 -кислым гликопротеидом, γ-глобулином и липопротеинами. Однако прочная связь с белками не влияет на плазменный клиренс и объем распределения препаратов этой группы.

    У антагонистов рецепторов ангиотензина II длительный период полувыведения – от 9 до 24 ч. Благодаря этим особенностям, кратность введения препаратов этой группы составляет 1 р/сут.

    Препараты этой группы подвергаются частичному (менее 20%) метаболизму в печени под действием глюкуронилтрансферазы или микросомальной системы печени с участием цитохрома P450. Последний участвует в метаболизме лозартана, ирбесартана и кандесартана.

    Путь элиминации антагонистов рецепторов ангиотензина II преимущественно внепочечный - более 70% дозы. Менее 30% дозы экскретируются почками.

    Фармакокинетические параметры антагонистов рецепторов ангиотензина II
    Препарат Биодоступность (%) Связь в белками плазмы (%) Максимальная концентрация (ч) Период полувыведения (ч) Объем распределения (л) Экскреция (%)
    Печеночная Почечная
    Валсартан 23 94-97 2-4 6-7 17 70 30
    Ирбесартан 60-80 96 1,5-2 11-15 53-93 Более 75 20
    Кандесартан 42 Более 99 4 9 10 68 33
    Лозартан 33 99 1-2 2 (6-7) 34 (12) 65 35
    Телмисартан 42-58 Более 98 0,5-1 24 500 Более 98 Менее 1
    Эпросартан 13 98 1-2 5-9 13 70 30

    У больных с тяжелой печеночной недостаточностью может наблюдаться повышение биодоступности, максимальной концентрации и площади под кривой «концентрация – время» (AUC) лозартана, валсартана и телмисартана.

То есть они:

    снижают сопротивление артериол,

    увеличивают венозный пул крови,

    увеличивают сердечный выброс, сердечный индекс,

    снижают реноваскулярное сопротивление,

    приводят к увеличению натийуреза(экскреции натрия с мочой).

Концентрация ренина в крови увеличивается за негативной обратной связи между преобразованием AI в AII. Уровень ангиотензина I также растет по аналогичной причине. Количество AII и альдостерона – уменьшается, тогда как брадикинина – увеличивается за счет снижения его инактивации, которая осуществляется при участии АПФ.

В обычных условиях, ангиотензин II имеет такое влияние на организм:

1. Действует как вазоконстриктор (сужает кровеносные сосуды).

Вследствие такого воздействия происходит повышение артериального давления и появляется артериальная гипертензия. Кроме того, сужение эфферентных артериол почек приводит к повышению перфузионного давления в клубочках этих органов;

2. Приводит к ремоделированию (изменению размеров) и гипертрофии желудочков сердца;

3. Приводит к активации процессов освобождения корой надпочечников – альдостерона, гормона, который действует в почечных канальцах и приводит к удержанию натрия и ионов хлорида и в организме и повышает экскрецию калия. Натрий удерживает воду, что приводит к увеличению объема крови, а, соответственно и к повышению артериального давления.

4. Стимулирует заднюю долю гипофиза , что ведет к освобождению вазопрессина (который также известный под названием антидиуретический гормон (АДГ)) и приводит к удержанию воды через воздействие на почки.

5. Снижает уровень почечной протеинкиназы.

Применение ингибиторов АПФ снижает действие ангиотензина II, вследствие чего происходит снижение кровяного давления.

Механизм действия ренин-ангиотензин-альдостероновой системы на организм и воздействие на нее ингибиторов АПФ.

Эпидемиологические и клинические исследования показали, что ингибиторы АПФ замедляют развитие диабетической нефропатии. Этот механизм действия ингибиторов АПФ, используется для профилактики диабетической почечной недостаточности.

Можно также сказать, что ингибиторы АПФ эффективны не только для лечения гипертензии, но и для преодоления некоторых симптомов у людей с нормальным АД.

Использование максимальной дозы ингибиторов АПФ для таких больных (в том числе для профилактики диабетической нефропатии, застойной сердечной недостаточности, профилактики сердечно-сосудистых расстройств) является оправданным, поскольку эти препараты улучшают клиническое состояние больных, независимо от их действия на артериальное давление.

Такое лечение обычно требует тщательного и постепенного титрования дозы препарата, для того чтобы предотвратить последствия быстрого снижения АД (головокружение, потеря сознания и др).

Ингибиторы АПФ также вызывают повышение активности центральной парасимпатической системы у здоровых людей и людей с сердечной недостаточностью, при этом возрастаетвариабельность сердечного ритма. Это может уменьшить распространенность злокачественных нарушений ритма сердца и сократить риск внезапной смерти человека.

Один из ингибиторов АПФ – эналаприл также сокращает сердечной кахексию у больных с хронической сердечной недостаточностью.

Кахексия – это очень плохой прогностический признак у пациентов с хронической сердечной недостаточностью. Ингибиторы АПФ в настоящее время используются также для того, чтобы улучшить проявления слабости и атрофии мышц у пожилых пациентов без сердечной недостаточности.

Побочные эффекты.

Типичные побочные реакции, которые возникают при употреблении ИАПФ включают:

    гипотензию

  • гиперкалиемию

    головную боль

    головокружение

    усталость

  • почечную недостаточность.

Данные некоторых исследований указывают также на то, что ингибиторы АПФ могут увеличить боль, вызванную воспалительными процессами.

Устойчивый сухой кашель является относительно частым побочным эффектом действия ИАПФ, который, как считается, связан с увеличением уровня образования брадикинина, хотя роль этого вещества в процессе возникновении этих симптомов некоторыми исследователями оспаривается. Пациенты, у которых возникает кашель, часто начинают употреблять антагонисты рецепторов ангиотензина II.

Высыпания и нарушение вкусовых ощущений, которые редко встречаются при приеме большинства ингибиторов АПФ, часто возникают при употреблении каптоприла и объясняются его сульфгидрильными частицами. Именно это является причиной уменьшения частоты использования каптоприла в клинических условиях, хотя препарат все еще используется при сцинтиграфии почек.

Одним из самых опасных побочных эффектов действия всех ингибиторов АПФ является почечная недостаточность, причина возникновения которой сегодня до конца не известна. Некоторые исследователи считают, что это связано с их влиянием на косвенные гомеостатические функции ангиотензина II, такие как почечный кровоток.

Почечный кровоток может быть нарушен из-за действия ангиотензина II, поскольку этот фермент сужает эфферентные артериолы клубочков почек, увеличивая тем самым скорость клубочковой фильтрации (СКФ). Таким образом, именно за счет снижения уровня ангиотензина II, ингибиторы АПФ могут уменьшить СКФ, которая является своеобразным показателем функциональности почек.

Если говорить точнее, то ингибиторы АПФ могут вызывать или обострять почечную недостаточность у пациентов со стенозом почечных артерий. Особенно существенной эта проблема считается тогда, когда пациент одновременно принимает НПВП (не стероидные противовоспалительные препараты) и мочегонные средства. Ведь параллельное употребление этих трех медикаментов существенно повышает риск развития почечной недостаточности.

Кроме того, стоит отметить, что ингибиторы АПФ могут привести к гиперкалиемии. Подавление действия ангиотензина II приводит к уменьшению уровня альдостерона, который в свою очередь отвечает за повышение экскреции калия, именно потому, ингибиторы АПФ в конечном итоге могут вызвать задержку калия в организме.

Если этот эффект выражен умеренно, то это может быть полезно для организма, однако тяжелая гиперкалиемия может вызывать нарушения ритма и проводимости сердца, а также другие тяжелые осложнения.

Тяжелая аллергическая реакция, на препараты, которая может возникать очень редко, влияет на стенки кишечника и, соответственно, может вызвать боль в животе.

Также, у некоторых пациентов через повышение уровня брадикинина возникает отек Квинке. Однако, считается, что такая негативная реакция вызвана генетической предрасположенностью пациента, и именно поэтому брадикинин расщепляется медленнее, чем должен.

Если беременные женщины принимают ингибиторы АПФ в течение первого триместра беременности, то это может стать причиной появления серьезных врожденных пороков развития,рождения мертвого ребенка и смерти новорожденных.

Распространенные аномалии развития плода включают:

Гипотензию,

Почечную дисплазию,

Анурии (олигурии),

Маловодье,

Задержку внутриутробного развития плода,

Легочную гипоплазию,

Открытую артериальную протоку,

Неполную оссификацию черепа.

Противопоказания и меры предосторожности

Ингибиторы АПФ противопоказаны пациентам с:

    возникновением в прошлом отека Квинке, который связан с употреблением ингибиторов АПФ;

    стенозом почечной артерии (двусторонним или односторонним);

    повышенной чувствительностью к ингибиторам АПФ;

Ингибиторы АПФ следует применять осторожно пациентам с:

    нарушениями функций почек;

    стенозом аортального клапана или с нарушением сердечного оттока;

    гиповолемией или дегидратацией;

    гемодиализом с помощью мембран высокого потока из полиакрилонитрила.

Ингибиторы АПФ относятся к препаратам категории D , то есть их использования следует избегать женщинам, планирующим в ближайшее время забеременеть.

Кроме того в инструкции к этим препаратам указано, что они существенно повышают риск возникновения врожденных дефектов, если их принимать на втором или третьем триместре беременности.

Их использование на первом триместре также связано с риском возникновения серьезных врожденных пороков развития, особенно это касается нарушений сердечно-сосудистой и центральной нервной системы.

Препараты калия следует использовать очень осторожно и под наблюдением врача, через вероятность развития гиперкалиемии вследствие приема ингибиторов АПФ.

Классификация.

Ингибиторы АПФ могут быть разделены на три группы в зависимости от их молекулярного строения:

    каптоприл (торговая марка Capoten), первый ингибитор АПФ;

    зофеноприл.

    эналаприл (вазокет / ренитек);

    рамиприл (Altace / Tritace / Ramace / Ramiwin);

    хинаприл (Accupril);

    периндоприл (Престариум / Coversyl / Aceon);

    лизиноприл (Listril / Lopril / Новатэк / Prinivil / Zestril);

    беназеприл (Lotensin);

    имидаприл (Tanatril);

    зофеноприл (Zofecard);

Единственным представителем этой группы является фозиноприл (Моноприл).

Естественное происхождение

    Казокинины (сasokinins) и лактокинины (lactokinins) являются продуктами распада казеина и молочной сыворотки. В естественных условиях (в организме человека) они образуются после употребления молочных продуктов, сыворотки, то есть их образование происходит в природе после употребления молочных продуктов, особенно кисломолочных. Их влияние на артериальное давление на сегодня до конца не определено.

    Лактотрипептиды Val-Pro-Pro и Ile-Pro-Pro, которые образуются пробиотиком Lactobacillus helveticus или получаемые из казеина также приводят к ингибированию АПФ и имеют антигипертензивные функции.

Эквиваленты ИАПФ.

Ингибиторы АПФ имеют разную силу воздействия и, соответственно, разные стартовые дозы. Дозировка препарата должна быть скорректировано в зависимости от реакции организма на действие препарата, что проявляется в течение первых пяти-десяти дней от начала лечения.

Дозы ингибиторов АПФ при артериальной гипертензии.

Дозы ингибиторв АПФ при артериальной гипертензии

Название

Эквивалентная суточная доза

Дозирование

Начало

Ежедневное употребление

Максимальная доза

Беназеприл

Каптоприл

50 мг (25 мг дважды в сутки)

12.5–25 мг (дважды-трижды в сутки)

25–50 мг (дважды-трижды в сутки)

Еналаприл

Фозиноприл

Лизиноприл

Моэксиприл

Периндоприл

Хинаприл

Рамиприл

Трандолаприл

Смоленская государственная медицинская академия

Кафедра клинической фармакологии

КЛИНИЧЕСКАЯ ФАРМАКОЛОГИЯ ИНГИБИТОРОВ АНГИОТЕНЗИН-ПРЕВРАЩАЮЩЕГО ФЕРМЕНТА

В патогенезе артериальной гипертензии и сердечной недостаточности важная роль принадлежит активации ренин-ангиотензин-альдостероновой системы (РААС), которая запускает и в дальнейшем поддерживает порочный круг при этих состояниях.

Функционирование РААС

Основная роль РААС в процессе эволюции заключается в поддержании функции кровообращения в условиях острой кровопотери и дефицита натрия, то есть при недозаполненности сосудистого русла.

Если происходит потеря натрия и воды (диуретики, кровопотеря) или уменьшается кровоснабжение почек, в почках начинается повышенная выработка ренина. Ренин способствует превращению ангиотензиногена, образующегося в печени, в физиологически неактивный ангиотензин I. Ангиотензин под влиянием ангиотензин-превращающего фермента (АПФ) превращается в активное соединение -ангиотензин II.

Помимо циркулирующих в крови, компоненты РААС обнаружены в почках, легких, сердце, гладкой мускулатуре сосудов, головном мозге, печени и других органах. Эти системы способны синтезировать ангиотензин II в тканях и без поступления ренина извне. Тканевые РАС являются важным фактором регуляции кровоснабжения и функции органов, где они располагаются.

Биологическая роль ангиотензина II

Ангиотензин II обладает широким спектром биологической активности:

1. Стимулирует специфические ангиотензиновые рецепторы кровеносных сосудов, что оказывает прямое мощное сосудосуживающее влияние на артериолы, повышая тем самым общее периферическое сопротивление сосудов и АД: тонус вен увеличивается в меньшей степени.

2. Является физиологическим фактором роста. Повышает клеточную.пролиферацию, увеличивая размер клеток и их число. В результате этого происходит, с одной стороны, утолщение гладкомышечного слоя сосудов и уменьшение их просвета, с другой, развивается гипертрофия миокарда левого желудочка.

3. Стимулирует выработку в коре надпочечников минералокортикоидного гормона альдостерона. Альдостерон увеличивает реабсорбцию натрия в канальцах.почек, в результате чего повышается осмотическое давление плазмы крови. Это, в свою очередь, приводит к увеличению выработки антидиуретического гормона (АДГ, вазопрессин) и задержке в организме воды. В результате повышается объем циркулирующей крови (ОЦК) и нагрузка на миокард, а также увеличивается отечность сосудистой стенки, что делает ее более чувствительной к сосудосуживающим влияниям.

4. Увеличивает активность симпатоадреналовой системы: стимулирует выработку в мозговом слое надпочечников норад-реналина, который сам по себе приводит к увеличению спазма сосудов и стимуляции роста мышечных клеток, а также усиливает его действие на уровне постганглионарных нейронов и увеличивает поток адренергических импульсов из специфических центров головного мозга, ответственных за поддержание АД.

В крови расщепляет другой белок ангиотензиноген (АТГ) с образованием белка ангиотензина 1 (АТ1) , состоящего из 10 аминокислот (декапептид).

Другой фермент крови – АПФ (Ангиотензин превращающий фермент, Ангиотензинконвертин энзим (АСЕ), Конвертирующий фактор Е лёгких) отщепляет от АТ1 две хвостовые аминокислоты с образованием белка из 8 аминокислот (октапептид), который называется ангиотензин 2 (АТ2) . Способностью образовывать из АТ1 ангиотензин 2 обладают и другие ферменты – химазы, катепсин G, тонин и другие сериновые протеазы, но в меньшей степени. В эпифизе головного мозга содержится большое количество химазы, которая превращает АТ1 в АТ2. В основном ангиотензин 2 образуется из ангиотензина 1 под влиянием АПФ. Образование АТ2 из АТ1с помощью химаз, катепсина G, тонина и других сериновых протеаз, называется альтернативным путём образования АТ2. АПФ присутствует в крови и во всех тканях организма, но больше всего синтезируется АПФ в лёгких. АПФ является кининазой, поэтому расщепляет кинины, которые в организме оказывают сосудорасширяющее действие.

Ангиотензин 2 оказывает своё действие на клетки организма через белки на поверхности клеток, которые называются ангиотензин рецепторами (АТ рецепторами). АТ-рецепторы бывают разных типов: АТ1 рецепторы, АТ2 рецепторы, АТ3 рецепторы, АТ4 рецепторы и другие. Наибольшее сродство АТ2 имеет к АТ1 рецепторам. Поэтому в первую очередь АТ2 вступает в соединение с АТ1 рецепторами. В результате этого соединения происходят процессы, которые приводят к повышению артериального давления (АД). Если уровень АТ2 высок, а свободных АТ1 рецепторов нет (не связанных с АТ2), то АТ2 соединяется с АТ2 рецепторами, к которым имеет меньшее сродство. Соединение АТ2 с АТ2 рецепторами запускает противоположные процессы, которые приводят к понижению АД.

Ангиотензин 2 (АТ2) соединяясь с АТ1 рецепторами:

  1. оказывает на сосуды очень сильное и продолжительное сосудосуживающее действие (до нескольких часов), увеличивая тем самым сопротивление сосудов, а, значит, и артериальное давление (АД). В результате соединения АТ2 с АТ1 рецепторами клеток кровеносных сосудов, запускаются химические процессы, в результате которых происходит сокращение гладкомышечных клеток средней оболочки, сосуды сужаются (происходит спазм сосудов), внутренний диаметр сосуда (просвет сосуда) уменьшается, сопротивление сосуда увеличивается. В дозе всего лишь 0,001 мг АТ2 может увеличить АД более чем на 50 мм.рт.ст.
  2. инициирует задержку натрия и воды в организме, что увеличивает объём циркулирующей крови, а, значит, и АД. Ангиотензин 2 действует на клетки клубочковой зоной надпочечников. В результате этого действия клетки клубочковой зоны надпочечников начинают синтезировать и выделять в кровь гормон альдостерон (минералокортикоид). АТ2 способствует образованию альдостерона из кортикостерона через действие на альдостеронсинтетазу. Альдостерон усиливает реабсорбцию (поглощение) натрия, а, значит, и воды из почечных канальцев в кровь. Это приводит:
    • к задержке воды в организме, а, значит, – к увеличению объёма циркулирующей крови и к обусловленному этим, повышению АД;
    • задержка в организме натрия приводит к тому, что натрий проникает в эндотелиальные клетки, покрывающие кровеносные сосуды изнутри. Увеличение концентрации натрия в клетке приводит к увеличению количества воды в клетке. Эндотелиальные клетки увеличиваются в объёме (набухают, «отекают»). Это приводит к сужению просвета сосуда. Уменьшение просвета сосуда увеличивает его сопротивление. Увеличение сопротивления сосуда увеличивает силу сердечных сокращений. Кроме того, задержка натрия – повышает чувствительность АТ1 рецепторов к АТ2. Это ускоряет и усиливает сосудосуживающее действие АТ2. Всё это суммарно приводит к повышению АД
  3. стимулирует клетки гипоталамуса на синтез и выделение в кровь антидиуретического гормона вазопрессина и клетками аденогипофиза (передней доли гипофиза) адренокортикотропного гормона (АКТГ). Вазопрессин оказывает:
    1. сосудосуживающее действие;
    2. задерживает воду в организме, усиливая в результате расширения межклеточных пор реабсорбцию (поглощение) воды из почечных канальцев в кровь. Это приводит к увеличению объёма циркулирующей крови;
    3. усиливает сосудосуживающее действие катехоламинов (адреналина, норадреналина) и ангиотензина 2.

    АКТГ стимулирует синтез клетками пучковой зоны коркового слоя надпочечников глюкокортикоидов: кортизола, кортизона, кортикостерона, 11-дезоксикортизола, 11-дегидрокортикостерона. Наибольшим биологическим действием обладает кортизол. Кортизол не обладает сосудосуживающим действием, но усиливает сосудосуживающее действие гормонов адреналина и норадреналина, синтезируемых клетками пучковой зоны коркового слоя надпочечников.

  4. является кининазой, поэтому расщепляет кинины, которые в организме оказывают сосудорасширяющее действие.

При увеличении уровня ангиотензина 2 в крови может появиться ощущение жажды, сухости во рту.

При продолжительном увеличении в крови и в тканях АТ2:

  1. гладкомышечные клетки кровеносных сосудов продолжительное время находятся в состоянии сокращения (сжатия). В результате этого развивается гипертрофия (утолщение) гладкомышечных клеток и избыточное образование коллагеновых волокон – стенки сосудов утолщаются, внутренний диаметр сосудов уменьшается. Таким образом, гипертрофия мышечного слоя кровеносных сосудов, развившаяся под продолжительным влиянием на сосуды избыточного количества АТ2 в крови, увеличивает периферическое сопротивление сосудов, а, значит, – и АД;
  2. сердце продолжительное время вынуждено сокращаться с большей силой, чтобы перекачивать больший объём крови и преодолевать большее сопротивление спазмированных сосудов. Это приводит сначала к развитию гипертрофии сердечной мышцы, к увеличению её размеров, к увеличению размеров сердца (больше левого желудочка), а затем происходит истощение клеток сердечной мышцы (миокардиоцитов), их дистрофия (миокардиодистрофия), заканчивающаяся их гибелью и замещением соединительной тканью (кардиосклероз), что в конечном итоге приводит к сердечной недостаточности;
  3. продолжительный спазм кровеносных сосудов в сочетании с гипертрофией мышечного слоя сосудов приводит к ухудшению кровоснабжения органов и тканей. От недостаточного кровоснабжения страдают в первую очередь почки, головной мозг, зрение, сердце. Недостаточное кровоснабжение почек на протяжении длительного времени приводит клетки почек к состоянию дистрофии (истощению), гибели и замещению соединительной тканью (нефросклероз, сморщивание почки), ухудшению функции почек (почечной недостаточности). Недостаточное кровоснабжение мозга приводит к ухудшению интеллектуальных возможностей, памяти, коммуникабельности, работоспособности, к эмоциональным расстройствам, расстройствам сна, головным болям, головокружениям, к ощущению шума в ушах, чувствительным расстройствам и другим расстройствам. Недостаточное кровоснабжение сердца – к ишемической болезни сердца (стенокардия, инфаркт миокарда). Недостаточное кровоснабжение сетчатки глаза – к прогрессирующему нарушению остроты зрения;
  4. уменьшается чувствительность клеток организма к инсулину (инсулинорезистентность клеток) – инициация возникновения и прогрессирования сахарного диабета 2 типа. Инсулинорезистентность приводит к увеличению инсулина в крови (гиперинсулинемия). Продолжительная гиперинсулинемия становится причиной стойкого повышения АД – артериальной гипертензии, так как приводит:
    • к задержке натрия и воды в организме – увеличение объёма циркулирующей крови, увеличение сопротивления сосудов, увеличение силы сердечных сокращений – повышение АД;
    • к гипертрофии гладкомышечных клеток сосудов – – повышение АД;
    • к повышенному содержанию ионов кальция внутри клетки – – повышение АД;
    • к повышению тонуса – , увеличение объёма циркулирующей крови, увеличение силы сердечных сокращений – повышение АД;

Ангиотензин 2 подвергается дальнейшему ферментативному разщеплению глютамил аминопептидазой с образованием Ангиотензина 3, состоящего из 7 аминокислот. У ангиотензина 3 сосудосуживающее действие слабее, чем у ангиотензина 2, а способность стимулировать синтез альдостерона – сильнее. Ангиотензин 3 ферментом аргинин аминопептидазой расщеплятся до ангиотензина 4, состоящего из 6 аминокислот.