Восточно-Европейская платфор­ма. Восточно-Европейская платформа: форма рельефа. Полезные ископаемые Восточно-Европейской платформы

Восточно-Европейская платформа (ВЕП)

5.1. Общая характеристика

Географически занимает территории Среднерусской и Среднеевропейской равнин, охватывая обширную территорию от Урала на востоке и почти до побережья Атлантического океана на западе. На этой территории расположены бассейны рек Волга, Дон, Днепр, Днестр, Неман, Печора, Висла, Одер, Рейн, Эльба, Дунай, Даугава и др.

На территории России ВЕП занимает Среднерусскую возвышенность, характеризующуюся преимущественно равнинным рельефом, с абсолютными отметками до 500 м. Только на Кольском полуострове и в Карелии проявлен горный рельеф с абсолютными отметками до 1 200 м.

Границами ВЕП являются: на востоке – Уральская складчатая область, на юге – структуры Средиземноморского складчатого пояса, на севере и северо-западе – структуры Скандинавских каледонид.

5.2. Основные структурные элементы

Как и любая платформа, ВЕП имеет двухъярусное строение.

Нижний ярус – это архейско-раннепротерозойский фундамент, верхний ярус – рифейско-кайнозойский чехол.

Фундамент на ВЕП залегает на глубинах от 0 до (по геофизическим данным) 20 км.

Фундамент на поверхность выходит в двух регионах: 1) в Карелии и на Кольском полуострове, где он представлен Балтийским щитом , занимающим также территории Финляндии, Швеции и части Норвегии; 2) в центральной Украине, где он представлен Украинским щитом . Область залегания фундамента на глубинах до 500 м в районе г. Воронеж называетсяВоронежским кристаллическим массивом .

Область распространения платформенного чехла рифейско-кайнозойского возраста называется Русской плитой .

Основные структуры Восточно-Европейской платформы показаны на рис. 4.

Рис. 4. Основные структуры Восточно-Европейской платформы

1. Граница платформы. 2. Границы основных структур. 3. Южная граница Скифской плиты. 4. Докембрийские авлакогены. 5. Палеозойские авлакогены. Цифры в кружках обозначают названия структур, не подписанные на схеме: 1-9 – авлакогены (1 – Беломорский, 2 – Лешуконский, 3 – Вожже-Лачский, 4 – Среднерусский, 5 – Кажимский, 6 – Калтасинсикй, 7 – Серноводско-Абдулинский, 8 – Пачелмский, 9 – Печоро-Колвинский); 10 – Московский грабен; 11 – Ижма-Печорская впадина; 12 – Хорейверская впадина; 13 – Предкавказский краевой прогиб; 14-16 – седловины (14 – Латвийская, 15 – Жлобинская, 16 – Полесская).

Областям относительно глубокого (более 2 км) залегания фундамента отвечают пологие отрицательные структуры – синеклизы .

Московская ,занимающая центральную часть плиты; 2) Тимано-Печорская (Печорская) , расположенная на северо-востоке плиты, между структурами Урала и Тиманским кряжем; 3) Прикаспийская , расположенная на юго-востоке плиты, занимающая междуречье Волги и Эмбы, на склонах Волго-Уральской и Воронежской антеклиз.

Областям относительно приподнятого положения фундамента отвечают пологие положительные структуры – антеклизы .

Главнейшими из них являются: 1) Воронежская , расположенная над одноименным кристаллическим массивом; 2) Волго-Уральская , расположенная в восточной части плиты, ограниченная с востока структурами Урала, с севера Тиманским кряжем, с юга – Прикаспийской синеклизой, с юго-запада Воронежской антеклизой, с запада – Московской синеклизой.

В пределах синеклиз и антеклиз выделяются структуры более высоких порядков, такие как валы, своды, впадины и прогибы.

Тимано-Печорской, Прикаспийской синеклизам и Волго-Уральской антеклизе отвечают одноименные нефтегазоносные провинции.

Между Украинским щитом и Воронежским кристаллическим массивом (и одноименной антеклизой) расположен Днепровско-Донецкий (Припятско-Донецкий) авлакоген – это узкая структура грабенообразного погружения фундамента и увеличенной (до 10-12 км) мощности пород чехла, имеющая запад-северо-западное простирание.

5.3. Строение фундамента

Фундамент платформы образован архейскими и раннепротерозойскими комплексами глубокометаморфизованных пород. Их первичный состав не всегда расшифровываются однозначно. Возраст пород определяется по данным абсолютной геохронологии.

Балтийский щит . Занимает северо-западную часть платформы, и граничит со складчатыми структурами Скандинавских каледонид по разломам глубокого заложения, имеющим надвиговую природу. К югу и юго-востоку фундамент ступенчато погружается под рифейско-кайнозойский чехол Русской плиты.

Комплексы раннего архея (кольская серияAR 1 )в разных блоках Балтийского щита представлены разнообразными гнейсами, кристаллическими сланцами, железистыми (магнетитовыми) кварцитами, амфиболитами, мраморами, мигматитами. Среди гнейсов выделяются следующие разновидности: амфиболовые, биотитовые, высокоглиноземистые (с кианитом, андалузитом, силлиманитом). Вероятным протолитом амфиболитов и амфиболовых гнейсов являются породы типа базитов (базальтоиды и габброиды), высокоглиноземистых гнейсов – осадочные породы типа глинистых осадков, магнетитовых кварцитов – железисто-кремнистые отложения (типа яшмоидов), мраморов – карбонатные отложения (известняки, доломиты). Мощность образований AR 1 не менее 10-12 км.

Образования раннего архея (AR 1 ) формируют структуры типа гнейсовых куполов, в центральных частях которых располагаются крупные массивы олигоклазовых и микроклиновых гранитов, с которыми связаны пегматитовые поля.

Комплексы позднего архея (AR 2 ) слагают узкие синклинорные зоны в образованиях AR 1 . Они представлены высокоглиноземистыми гнейсами и сланцами, конгломератами, амфиболитами, карбонатными породами, магнетитсодержащими кварцитами. Мощность образований AR 2 не менее 5-6 км.

Образования раннего протерозоя (PR 1 ) мощностью не менее 10 кмвыполняют узкие грабен-синклинальные структуры, врезанные в архейский субстрат. Они представлены конгломератами, песчаниками, алевролитами, аргиллитами, метаморфизованными субщелочными базальтоидами, кварцито-песчаникми, гравелитами, местами доломитами, а также шунгитами (высокоуглеродистые метаморфизованные породы типа сланцев).

Образования PR 1 прорваны одновозрастными интрузиями габброноритов печенгского комплекса с медно-никелевым оруденением, щелочными ультраосновными породами с карбонатитами, содержащими апатит-магнетитовые руды с флогопитом, а также более молодыми (рифейскими) гранитами-рапакиви (Выборгский массив) и нефелиновыми сиенитами девонского возраста. Последние представлены расслоенными концентрически зональными массивами: Хибинским с месторождениями апатит-нефелиновых руд и Ловозерским с месторождениями тантало-ниобатов.



На Балтийском щите пробурена самая глубокая в мире Кольская сверхглубокая скважина (СГ-3) глубиной 12 261 м (проектная глубина скважины – 15 000 м). Скважина пробурена в северо-западной части Кольского полуострова, в 10 км южнее г. Заполярный (Мурманская область), вблизи российско-норвежской границы. Бурение скважины начато в 1970 г. и закончено в 1991 г.

Скважина бурилась по программе глубокого и сверхглубокого бурения, осуществляемого в СССР по решениям Правительства.

Целью бурения СГ-3 являлось изучение глубинного строения докембрийских структур Балтийского щита, типичных для фундаментов древних платформ и оценка их рудоносности.

Задачами проходки скважины являлось :

1. Изучение глубинного строения протерозойского никеленосного печенгского комплекса и архейского кристаллического основания Балтийского щита, выяснение особенностей проявления на больших глубинах геологических процессов, включая процессы рудообразования.

2. Выяснение геологической природы сейсмических границ в континентальной земной коре и получение новых данных о тепловом режиме недр, глубинных водных растворах и газах.

3. Получение максимально полной информации о вещественном составе горных пород и их физическом состоянии, вскрытие и изучение пограничной зоны между «гранитным» и «базальтовым» слоями земной коры.

4. Усовершенствование имеющихся и создание новых технологий и технических средств для бурения и комплексных геофизических исследований сверхглубоких скважин.

Скважина бурилась с полным отбором керна, выход которого составил 3 591,9 м (29,3%).

Основные результаты бурения следующие .

1. В интервале 0 – 6 842 м вскрыты метаморфические образования PR 1 , состав которых примерно тот же, о котором речь шла выше. На глубинах 1 540-1 810 м вскрыты тела базитов с сульфидными медно-никелевыми рудами, что опровергло представление о выклинивании рудоносного печенгского комплекса и расширило перспективы Печенгского рудного поля.

2. В интервале 6 842 – 12 261 м вскрыты метаморфические образования AR, состав и строение которых примерно те же, о которых речь шла выше. На глубинах свыше 7 км в архейских гнейсах вскрыто несколько горизонтов магнетит-амфиболовых пород – аналогов железистых кварцитов Оленегорского и Костомукшского месторождений. На глубине около 8,7 км вскрыты габброиды с титаномагнетитовой минерализацией. В интервале 9,5 – 10,6 км в архейских образованиях установлен 800-метровый интервал с высокими (до 7,4 г/т) содержаниями золота, а также серебра, молибдена, висмута, мышьяка и некоторых других элементов, связанных с процессами гидрогенно-геохимического разуплотнения архейских пород.

3. Предполагаемая на глубинах около 7,5 км геофизическая граница (поверхность) Конрада (граница «гранитного» и «базальтового» слоев) не подтвердилась. Сейсмическая граница на этих глубинах отвечает зоне разуплотнения пород в архейских образованиях и вблизи границы архей-нижний протерозой.

4. На всем протяжении разреза скважины установлены притоки воды и газов, содержащих гелий, водород, азот, метан, тяжелые углеводороды. Исследования изотопного состава углерода показали, что в архейских толщах газы имеют мантийную природу, протерозойских – биогенную. Последнее может свидетельствовать о возможном зарождении биологических процессов, приведших в последствии к возникновению жизни на Земле, уже в раннем протерозое.

5. К числу принципиально новых относятся данные по изменениям температурного градиента. До глубины 3 000 м температурный градиент составляет 0,9-1 о /100 м. Глубже этот градиент возрос до 2-2,5 о /100 м. В итоге на глубине 12 км температура составила 220 о вместо ожидаемой 120-130 о.

В настоящее время Кольская скважина функционирует в режиме геолаборатории, являясь полигоном для испытания техники и технологии глубокого и сверхглубокого бурения и геофизического исследования скважин.

Украинский щит . Представляет собой крупный выступ фундамента, имеющий форму неправильного овала. С севера он ограничен разломами, по которым контактирует с Днепровско-Донецким авлагогеном, а в южном направлении погружается под отложения платформенного чехла.

В строении щита принимают участие метаморфические породы AR 1 , AR 2 и PR 1 .

Комплексы раннего архея (AR 1 )представлены плагиогнейсами, биотит-плагиоклазовыми, амфибол-плагиоклазовыми, высокоглиноземистыми (силлиманитовыми и корундовыми) гнейсами, кристаллическими сланцами, амфиболитами, мигматитами, кварцитами.

В строении комплексов позднего архея (AR 2 ) участвуют разнообразные гнейсы, амфиболиты, хлоритовые сланцы, железистые кварциты и роговики. Эти образования образуют узкие синклинорные зоны, врезанные в раннеархейский субстрат. Мощность образований AR не менее 5-7 км.

К образованиям раннего протерозоя (PR 1 )относится криворожская серия , вмещающая железорудные месторождения формации железистых кварцитов Криворожского бассейна.

Эта серия обладает трехчленным строением. В ее нижней части залегают аркозовые метапесчаники, кварциты, филлиты. Средняя часть серии сложена, в основном, переслаивающимися джеспилитами, куммингтонитовыми, серицитовыми, хлоритовыми сланцами. В этой части серии расположены основные промышленные железорудные залежи Криворожского бассейна; количество рудных пластов в разных частях бассейна колеблется от 2 до 7. Верхняя часть серии сложена кварцито-песчаниками с осадочно-метаморфизованными железными рудами, кварцево-углеродистыми, слюдистыми, биотит-кварцевыми и двуслюдяными сланцами, карбонатными породами, метапесчаниками. Общая мощность образований криворожской серии не менее 5-5,5 км.

Среди комплексов AR и PR расположены крупные массивы архейского и раннепротерозойского возраста: гранитов (Уманский, Криворожский и др.), сложные многофазные плутоны, состав которых меняется от габбро-анортозитов, лабрадоритов до гранитов-рапакиви (Коростеньский и др.), а также массивы нефелиновых сиенитов (Мариупольский) с тантало-ниобиеввой минерализацией.

Воронежский кристаллический массив . Расположен на глубинах до 500 м. Изучен в связи с геологоразведочными и эксплуатационными работами на железные руды Курской магнитной аномалии (КМА).

Архейские (AR )образования представлены здесь разнообразными гнейсами, амфиболитами, железистыми роговиками, кристаллическими сланцами.

Образования раннего протерозоя (PR 1 ) выделены как курская и оскольская серии . В составе курской серии представлены: в нижней части чередующиеся метапесчаники, кварциты, гравелиты, в верхней части – чередующиеся филлиты, двуслюдяные, биотитовые сланцы, горизонты железистых кварцитов, к которым приурочены месторождения КМА. Мощность образований курской серии не менее 1 км. Залегающая выше оскольская серия мощностью 3,5-4 км образована углеродистыми сланцами, метапесчаниками, метабазальтами.

Среди толщ AR и PR расположены массивы одновозрастных интрузивных пород, представленные гранитами, габброноритами с медно-никелевым оруденением, граносиенитами.

5.4. Строение чехла

В строении чехла Русской плиты выделены 5 структурно-стратиграфических комплексов (снизу вверх): рифейский, венд-кембрийский, раннепалеозойский (ордовикско-раннедевонский), средне-позднепалео-зойский (среднедевонско-пермский), мезозойско-кайнозойский (триас-кайнозойский).

Рифейский комплекс

Рифейские толщи распространены в центральных и окраинных частях платформы. Наиболее полные разрезы рифея расположены на западном Урале, о которых речь будет идти при рассмотрении этого региона. Рифей центральной части платформы представлен всеми тремя отделами.

Ранний рифей (RF 1 ). В его нижней части залегают красноцветные кварцевые и кварц-полевошпатовые песчаники с горизонтами базальтов траппового типа. Вверх по разрезу они сменяются темными аргиллитами с прослоями мергелей, доломитов и алевролитов. Еще выше залегает мощная толща доломитов с прослоями аргиллитов. Мощность около 3,5 км.

Средний рифей (RF 2 ). Представлен преимущественно сероцветными песчаниками с прослоями доломитов и базальтов траппового типа общей мощностью около 2,5 км. В стратифицированном разрезе залегают пластовые тела долеритов, габбродолеритов.

Поздний рифей (RF 3 ). В его основании залегают кварцевые и кварц-полевошпатовые песчаники, выше – красные аргиллиты и алевролиты с прослоями доломитов, еще выше – чередование аргиллитов, алевролитов, песчаников и доломитов; завершается разрез доломитами. Общая мощность около 2 км.

ВОСТОЧНО-ЕВРОПЕЙСКАЯ ПЛАТФОРМА

История выделения

В 1894 г. А. П. Карпинский впервые выделил Русскую плиту, понимая под ней часть территории Европы, характеризующуюся стабильностью тектонического режима в течение палеозоя, мезозоя и кайнозоя. Несколько раньше Эдуард Зюсс в своей знаменитой книге "Лик Земли" также выделил Русскую плиту и Скандинавский щит. В советской геологической литературе плиты и щиты стали считать составными единицами более крупных структурных элементов земной коры - платформ. В 20-х годах нашего века Г. Штилле для обозначения этой платформы употребил термин "Фенносарматия". Позднее А. Д. Архангельский ввел в литературу понятие "Восточно-Европейская платформа", указывая, что в ее составе могут быть выделены щиты и плита (Русская). Это наименование быстро вошло в геологический обиход, и отражено на последней Международной тектонической карте Европы (1982).

Когда в конце прошлого века А. П. Карпинский впервые обобщил все геологические данные по Европейской России, на ее территории не было ни одной скважины, достигшей фундамента, да и мелкие скважины насчитывались единицами. После 1917 г. и особенно после Великой Отечественной войны геологическое изучение платформы пошло вперед стремительными темпами, с использованием всех новейших методов геологии, геофизики, бурения. Достаточно сказать, что в настоящее время на территории европейской части СССР располагаются тысячи скважин, вскрывших фундамент платформы, а менее глубокие скважины насчитываются сотнями тысяч. Вся платформа охвачена гравиметрическими и магнитометрическими наблюдениями, а для многих районов имеются данные ГСЗ. В последнее время широко используются космические снимки. Поэтому в настоящее время мы располагаем огромным новым фактическим геологическим материалом, ежегодно пополняющимся.

Границы платформы

Границы Восточно-Европейской платформы чрезвычайно резкие и четкие (рис. 2). Во многих местах она ограничена прямолинейными зонами надвигов и глубинных разломов, которые Н. С. Шатский называл краевыми швами или краевыми системами, отделяющими платформу от обрамляющих ее складчатых сооружений. Однако не во всех местах границы платформы могут быть проведены достаточно уверенно, особенно там, где ее краевые участки глубоко погружены и фундамент не вскрыт даже глубокими скважинами.

Восточная граница платформы, трассируется под позднепалеозойским Предуральским краевым прогибом, начиная от Полюдова Камня, через Уфимское плато к выступу Каратау вплоть до междуречья рек Урал и Сакмара. Герцинские складчатые сооружения Западного склона Урала надвинуты в сторону восточного края платформы. К северу от Полюдова Камня граница поворачивает к северо-западу, проходит вдоль юго-западного склона Тиманского кряжа, далее к южной части

Рис. 2. Тектоническая схема Восточно-Европейской платформы (по А. А. Богданову, с дополнениями):

1 - выступы на поверхность дорифейского фундамента (I - Балтийский и II - Украинский щиты); 2 - изогипсы поверхности фундамента (км), обрисовывающие главные структурные элементы Русской плиты (III - Воронежская и IV - Белорусская антеклизы; V - Татарский и VI - Токмовский своды Волго-Уральской антеклизы; VII - Балтийская, VIII - Московская и IX - Прикаспийская синеклизы; X - Днепровско-Донецкнй прогиб; XI - Причерноморская впадина; XII - Днестровский прогиб); 3 - области развития соляной тектоники; 4 - эпибайкальская Тимано-Печорская плита, внешняя (а ) и внутренняя (б ) зоны; 5 - каледониды; 6 - герциниды; 7 - герцинские краевые прогибы; 8 - альпиды; 9 10 - авлакогены; 11 - надвиги, покровы и направление надвигания масс пород; 12 - современные границы платформы

полуострова Канин (западнее Чешской губы) и далее к полуострову Рыбачий, острову Кильдин и Варангер-фиорду. На всем этом пространстве рифейские и вендские геосинклинальные толщи надвинуты на древнюю Восточно-Европейскую платформу (в каледонское время). В пользу такого проведения границы заставляют склоняться геофизические данные, свидетельствующие о продолжении структур рифейских толщ Северного и Полярного Урала, так называемых доуралид, в северо-западном направлении в сторону Болынеземельской тундры. Это хорошо подчеркивается полосовыми магнитными аномалиями, резко отличающимися от мозаичных аномалий магнитного поля Русской плиты. Магнитный минимум, характеризующий рифейские сланцевые

толщи Тимана, занимает и западную половину Печорской низменности, а восточная ее половина обладает уже другим, полосовым знакопеременным магнитным полем, сходным, по данным Р. А. Гафарова и А. К. Запольного, с аномальным полем зон развития вулканогенноосадочных рифейских толщ Северного и Полярного Урала 1 . Северо-восточнее Тимана фундамент Тимано-Печорской эпибайкальской плиты, представленный эффузивно-осадочными и метаморфическими породами рифея - венда (?), вскрыт рядом глубоких скважин.

Северо-западная граница платформы, начиная от Варангер-фиорда, скрыта под надвинутыми на Балтийский щит каледонидами северной Скандинавии (см. рис. 2). Амплитуда надвигания оценивается более чем в 100 км. В районе г. Берген граница платформы уходит в Северное море. В начале нашего века А. Торнквист наметил западную границу платформы по линии г. Берген - о. Бонхольм - Поморье - Куявский вал в Польше (Датско-Польский авлакоген), вдоль этой линии существует ряд кулисообразных разрывов с резко опущенным юго-западным крылом. С тех пор эта граница получила название "линии Торнквиста". Это "минимальная" граница платформы. Граница Восточно-Европейской платформы (линия Торнквиста) в районе о. Рюген поворачивает на запад, оставляя Ютландский полуостров в пределах платформы, и встречается где-то в Северном море с продолжением северной границы платформы, следующей вдоль фронта надвинутых каледонид и выходящей к Северному морю в Скандинавии.

От северной окраины Свентокшишских гор граница платформы прослеживается под Предкарпатским краевым прогибом, до Добруджи в устье Дуная, где она резко поворачивает к востоку и проходит южнее Одессы, через Сиваш и Азовское море, прерывается к востоку от Ейска в связи с заходом в тело платформы герцинского складчатого сооружения Донбасса и вновь появляется в Калмыцких степях. Надо отметить, что в том месте, где Карпаты на юге и на севере отворачивают к западу, платформа граничит с байкалидами (Рава - Русская зона). Несмотря на общую прямолинейность границ платформы в Причерноморье, она нарушена многочисленными поперечными разрывами.

Далее граница проходит южнее Астрахани и поворачивает к северо-востоку вдоль Южно-Эмбенской зоны разломов, которая трассирует узкий погребенный герцинский прогиб (авлакоген), сливающийся с Зилаирским синклинорием Урала. Этот Южно-Эмбенский герцинский авлакоген отсекает от платформы ее глубоко погруженный блок в пределах Устюрта, как предполагается по данным ГСЗ. От Актюбинского Приуралья граница платформы следует прямо к югу вдоль западного побережья Аральского моря вплоть до Барсакельмесского прогиба, где почти под прямым углом она поворачивает на запад, вдоль Мангышлакско-Гиссарского разлома. Существует также мнение, что в Северо-Устюртской глыбе фундамент имеет байкальский возраст, т. е. в юго-восточном углу платформы возникает почти такая же ситуация, как и в западном, что связано с неопределенностью возраста складчатого фундамента, погруженного на значительную глубину.

Таким образом, Восточно-Европейская платформа похожа на гигантский треугольник, стороны которого близки к прямолинейным. Характерной особенностью платформы является наличие по ее периферии глубоко опущенных впадин. С востока платформа ограничена

герцинидами Урала; с северо-востока - байкалидами Тимана; с северо-запада - каледонидами Скандинавии; с юга - преимущественно эпигерцинской Скифской плитой Альпийско-Средиземноморского пояса, и только в районе Восточных Карпат к платформе вплотную примыкают складчатые цепи альпид, наложенные на байкалиды и герциниды.

Соотношение фундамента и чехла

Фундамент платформы сложен метаморфическими образованиями нижнего и верхнего архея и нижнего протерозоя, прорванными гранитоидными интрузиями. Отложения верхнего протерозоя, в составе которых выделены рифей и венд, относятся уже к платформенному чехлу. Следовательно, возраст платформы, устанавливаемый по стратиграфическому положению древнейшего чехла, может быть определен как эпираннепротерозойский. По мнению Б, М. Келлера и В. С. Соколова, к наиболее древним отложениям чехла Восточно-Европейской платформы может принадлежать и верхняя часть нижнепротерозойских образований, представленных полого залегающими толщами песчаников, кварцитов и базальтов, слагающими простые прогибы. Последние часто осложнены сбросами и местами приобретают форму широких грабенов. Области с байкальским фундаментом не следует включать в состав древней платформы.

Древнейший чехол платформы обладает некоторыми особенностями, отличающими его от типичного платформенного чехла палеозойского возраста. В различных местах платформы возраст древнейшего чехла может быть разным. В истории формирования платформенного чехла выделяются две существенно различные стадии. Первая из них, по А. А. Богданову и Б. М. Келлеру, отвечает, по-видимому, всему рифейскому времени и началу раннего венда и характеризуется образованием глубоких и узких грабенообразных впадин - авлакогенов, по Н. С. Шатскому, выполненных слабо метаморфизованными, а иногда и дислоцированными рифейскими и нижневендскими отложениями. Возникновение узких впадин предопределялось сбросами и структурным рисунком наиболее молодых складчатых зон фундамента. Такой процесс сопровождался довольно энергичным вулканизмом. А. А. Богданов предложил именовать эту стадию развития платформы авлакогенной, а отложения, сформировавшиеся в это время, выделять в нижний этаж платформенного чехла. Надо заметить, что большинство рифейских авлакогенов продолжало "жить" и в фанерозое, подвергаясь складчатым кадвиговым и глыбовым деформациям, а местами проявлялся и вулканизм.

Вторая стадия началась во второй половине венда и сопровождалась существенной тектонической перестройкой, выразившейся в отмирании авлакогенов и формировании обширных пологих впадин - синеклиз, развивавшихся на протяжении всего фанерозоя. Отложения второй стадии, которую в целом можно назвать плитной, образуют верхний этаж платформенного чехла.

Рельеф фундамента и современная структура платформы

В пределах Восточно-Европейской платформы как структуры первого порядка выделяются Балтийский и Украинский щиты и Русская плита . Балтийский щит с конца среднего протерозоя испытывал тенденцию к поднятию. Украинский щит в палеогене и неогене перекрывался маломощным платформенным чехлом. Рельеф фундамента

Русской плиты чрезвычайно сильно расчленен, с размахом до 10 км, а местами и больше (рис. 3). В Прикаспийской впадине глубина залегания фундамента оценивается в 20 или даже 25 км! Расчлененный характер рельефу фундамента придают многочисленные грабены - авлакогены, днища которых нарушены диагональными или ромбовидными сбросами, по которым происходили подвижки отдельных блоков с формированием горстов и более мелких вторичных грабенов. К таким авлакогенам относятся на востоке платформы Серноводско-Абдулинский, Казанско-Сергиевский, Кировский; в центре Пачелмский, Доно-Медведицкий, Московский, Среднерусский, Оршанско-Кресцовский ; на севере Кандалакшский, Керецко-Лешуконский, Ладожский ; на западе Львовский, Брестский и другие. Почти все эти авлакогены выражены в структуре отложений нижнего этажа платформенного чехла.

В современной структуре Русской плиты выделяются протягивающиеся в широтном направлении три крупные и сложнопостроенные антеклизы: Волго-Уральская, Воронежская и Белорусская (см. рис. 3). Все они представляют собой участки фундамента, приподнятые в виде сложных обширных сводов, нарушенных сбросами, по которым их отдельные части испытали разные по амплитуде перемещения. Мощность палеозойских и мезозойских отложений чехла в пределах антеклиз обычно составляет первые сотни метров. Наибольшей сложностью строения характеризуется Волго-Уральская антеклиза, состоящая из нескольких выступов фундамента (Токмовский и Татарский своды ), разделенных впадинами (например, Мелекесской), выполненными средне- и верхнепалеозойскими отложениями. Антеклизы осложнены валами (Вятским, Жигулевским, Камским, Окско-Цнинским ) и флексурами (Бугурусланской, Туймазинской и др.). От Прикаспийской впадины Волго-Уральская антеклиза отделяется полосой флексур, получивших название "зоны Перикаспийских дислокаций". Воронежская антеклиза обладает асимметричным профилем - с крутым юго-западным и очень пологим северо-восточным крыльями. От Волго-Уральской антеклизы она отделяется Пачелмским авлакогеном , открывающимся в Прикаспийскую впадину и в Московскую синеклизу. В районе Павловска и Богучар фундамент антеклизы обнажается на поверхности, а на юго-востоке она осложнена Доно-Медведицким валом. Белорусская антеклиза , обладающая наименьшими размерами, соединяется с Балтийским щитом Латвийской , а с Воронежской антеклизой - Бобруйской седловинами.

Московская синеклиза представляет собой обширную блюдцеобразную впадину, с наклонами на крыльях около 2-3 м на 1 км. Польско-Литовская синеклиза обрамляется с востока Латвийской седловиной, а с юга - Белорусской антеклизой и прослеживается в пределах акватории Балтийского моря. Местами она осложнена локальными поднятиями и впадинами.

Южнее полосы антеклиз располагается очень глубокая (до 20- 22 км) Прикаспийская впадина , на севере и северо-западе четко ограниченная зонами флексур; сложный Днепровско-Донецкий грабенообразный прогиб , разделяющийся Черниговским выступом на Припятский и Днепровский прогибы . Днепровско-Донецкий прогиб с юга ограничен Украинским щитом, южнее которого находится Причерноморская впадина, выполненная отложениями позднего мезозоя и кайнозоя.

Рис 3. Схема рельефа фундамента Русской плиты (с использованием материала В. Е. Хаина):

1 - выступы дорифейского фундамента на поверхность. Русская плита: 2 - глубина залегания фундамента 0-2 км; 3 - глубина залегания фундамента более 2 км; 4 - главные разрывные нарушения; 5 - эпибайкальские плиты; 6 - каледониды; 7 - герциниды; 8 - эпипалеозойские плиты; 9 - герцинский краевой прогиб; 10 - альпиды; 11 - альпийские краевые прогибы; 12 - надвиги и покровы. Цифры в кружках - основные структурные элементы. Щиты: 1 - Балтийский, 2 - Украинский. Антеклизы: 3 - Белорусская, 4 - Воронежская. Своды Волга-Уральской антеклизы: 5 - Татарский, 6 - Токмовский. Синеклизы: 7 - Московская, 8 - Польско-Литовская, 9 - Прикаспийская. Эпибайкальские плиты : 10 - Тимано-Печорская, 11 - Мизийская. 12 - Складчатое сооружение Урала, 13 - Предуральский прогиб. Эпипалеозойские плиты: 14 - Западно-Сибирская, 15 - Скифская. Альпиды : 16 - Восточные Карпаты, 17 - Горный Крым, 18 - Большой Кавказ. Краевые прогибы : 19 - Предкарпатский, 20 - Западно-Кубанский, 21 - Терско-Каспийский

Западный склон Украинского щита, характеризовавшийся устойчивым прогибанием в палеозойское время, иногда выделяют как Приднестровский прогиб , на севере переходящий во Львовскую впадину. Последняя отделяется Ратненским выступом фундамента от Брестской впадины , ограниченной с севера Белорусской антеклизой.

Строение фундамента платформы

Архейские и частично нижнепротерозойские отложения, слагающие фундамент Восточно-Европейской платформы, представляют собой толщи первичноосадочных, вулканогенно-осадочных и вулканогенных пород, метаморфизованных в различной степени. Архейские образования характеризуются очень энергичной и специфической складчатостью, связанной с пластическим течением материала при высоких давлениях и температурах. Часто наблюдаются такие структуры, как гнейсовые купола, впервые выделенные П. Эскола в северном Приладожье. Фундамент платформы обнажается только на Балтийском и Украинском щитах, а на остальном пространстве, особенно в пределах крупных антеклиз, он вскрыт скважинами и хорошо изучен геофизически. Для расчленения пород фундамента важны данные определения абсолютного возраста.

В пределах Восточно-Европейской платформы известны древнейшие породы с возрастом до 3,5 млрд. лет и более, образующие крупные блоки в фундаменте, которые обрамлены более молодыми складчатыми зонами позднеархейского и раннепротерозойского возраста.

Выходы фундамента на поверхность . Поверхность Балтийского щита резко расчленена (до 0,4 км), но обнаженность из-за покрова четвертичных ледниковых отложений все же слабая. Изучение докембрия Балтийского щита связано с именами А. А. Полканова, Н. Г. Судовикова, Б. М. Куплетского, К. О. Кратца, С. А. Соколова, М. А. Гиляровой, шведского геолога Н. X. Магнуссона, финских - В. Рамсея, П. Эскола, А. Симонена, М. Хярме и многих других. В последнее время опубликованы работы А. П. Светова, К. О. Кратца, К. И. Хейсканена. Украинский щит перекрыт кайнозойскими отложениями и обнажен гораздо хуже Балтийского. Докембрий Украинского щита изучался Н. П. Семененко, Г. И. Каляевым, Н. П. Щербаком, М. Г. Распоповой и другими. В настоящее время произведен существенный пересмотр данных о геологическом строении Балтийского и Украинского щитов и закрытых территорий Русской плиты.

Архейские образования . На Балтийском щите в Карелии и на Кольском полуострове выходят на поверхность древнейшие отложения, представленные гнейсами и гранулитами с возрастом (явно радиометрически омоложенным) 2,8-3,14 млрд. лет. По-видимому, эти толщи слагают фундамент так называемых беломорид , образующих в Карелии и на юге Кольского полустрова зону северо-западного простирания, а на севере полуострова - Мурманский массив. Беломориды в составе керетской, хетоламбинской и лоухской свит в Карелии и тундровой и лебяжинской на Кольском полуострове представлены различными гнейсами, в том числе и глиноземистыми (лоухская свита), амфиболитами, пироксеновыми и амфиболовыми кристаллическими сланцами, диопсидовыми кальцифирами, коматиитами, друзитами и другими первичноосадочными и вулканогенными породами основного и ультраосновного состава с многочисленными интрузиями разной формы. Высокометаморфизованные толщи образуют гнейсовые купола, впервые описанные П. Эскола около Сортовалы, с пологим, почти горизонтальным залеганием отложений в сводовой части и сложной складчатостью по краям. Возникновение таких структурных форм возможно лишь на больших глубинах в условиях высоких температур и давлений, когда вещество приобретает способность к пластическим деформациям и течению. Может быть, гнейсовые купола "всплывают" подобно соляным диапирам. Значения абсолютного возраста для беломорид не опускаются древнее 2,4-2,7 млрд. лет. Однако эти данные, несомненно, дают слишком молодой возраст пород.

На нижнеархейских отложениях беломорид в Карелии залегает толща позднеархейского возраста (лопий ), представленная ультраосновными (коматиитами со структурой спинифекс), основными и реже средними и кислыми вулканическими породами, вмещающими массивы гипербазитов и плагиогранитов. Взаимоотношение этих протогеосинклинальных отложений мощностью более 4 км с комплексом основания не совсем ясно. Предполагавшиеся конгломераты в основании лопия скорее всего являются бластомилонитами. Формирование этих типично зеленокаменных отложений закончилось ребольской складчатостью на рубеже 2,6-2,7 млрд. лет.

Аналогом лопия на Кольском полуострове являются парагнейсы и высокоглиноземистые сланцы кейвской серии , а также различно метаморфизованные породы тундровой серии (на юго-востоке), хотя не исключено, что последние являются продуктами диафтореза более древних отложений.

На Украинском щите широко распространены древнейшие архейские комплексы пород, слагающие четыре крупных блока, отделенные разломами от нижнепротерозойских сланцево-железорудных толщ, слагающих узкие приразломные синклинорные зоны. Волыно-Подольский, Белоцерковский, Кировоградский, Днепровский и Приазовский блоки (с запада на восток) сложены разнообразными архейскими толщами, причем Белоцерковский и Днепровский блоки - это амфиболиты, метабазиты, джеспилиты конкско-верховецкой, белозерской серии, т. е. породы первичноосновного состава, метаморфизованные в условиях амфиболитовой, иногда гранулитовой фации и напоминающие отложения лопия Балтийского щита. Остальные блоки сложены в основном верхнеархейскими гранито-гнейсами, гранитами, мигматитами, гнейсами, анатектитами - в целом кислыми породами, кое-где с реликтами древнего основания.

На Воронежской антеклизе древнейшими породами, аналогами беломорид и днеприд, являются гнейсы и гранито-гнейсы обоянской серии . На них залегают метабазиты Михайловской серии , по-видимому, одновозрастной лопию и метабазитам приднепровской серии (табл. 2).

Нижнепротерозойские образования относительно слабо развиты в фундаменте платформы, в том числе и на щитах, и резко отличаются от древнейших архейских толщ, слагая линейные складчатые зоны либо изометричные прогибы. На Балтийском щите выше архейских комплексов с явным несогласием залегают толщи сумия и сариолия . Сумийские отложения ближе к орогенным формациям и представлены терригенными породами и метабазитами, тесно связанными с расположенными выше сариолийскими конгломератами, которые частично могут замещать толщи сумия. В последнее время выше лопия и ниже сумия К. И. Хейсканеным выделяется толща суомия , сложенная кварцитами, карбонатами, кремнистыми и амфиболовыми сланцами и апо-базальтовыми амфиболитами, занимающая стратиграфический интервал 2,6-2,7 - 2,0-2,1 млрд. лет, соответствующая сортавальской серии северного Приладожья и "морскому ятулию" Финляндии. По-видимому, сюда же относятся флишоидные отложения ладожской серии , залегающие выше сортавальской .

Сумийско-сариолийский комплекс - это существенно вулканогенная толща с конгломератами в верхней части, мощность ее до 2,5 км. Преобладающие первично базальтовые, андезито-базальтовые и реже более кислые вулканиты приурочены к грабенам, осложнявшим, по данным А. П. Светова, крупное сводовое поднятие. Конгломераты сариолия тесно связаны со структурами сумия, причем последние в северной Карелии прорываются К-Na-гранитами.

После слабых фаз селецкой складчатости , происходившей на рубеже 2,3 млрд. лет, район современного Балтийского щита вступает в

Таблица 2

Схема расчленения образований фундамента Восточно-Европейской платформы

новый этап своего развития, уже напоминающий платформенный. Накоплению сравнительно маломощных толщ ятулия, суйсария и вепсия предшествовало формирование коры выветривания. Ятулий представлен кварцевыми конгломератами, гравелитами, песчаниками, кварцитами со следами ряби и трещин усыхания. Осадочные континентальные породы переслаиваются с покровами базальтов. Отложения суйсария слагаются в низах глинистыми сланцами, филлитами, шунгитами, доломитами; в средней части - покровами оливиновых и толеитовых базальтов, пикритов, а в верхах - снова преобладают песчаники и туфосланцы. Еще выше располагаются конгломераты и полимиктовые песчаники вепсия с силлами габбро-диабазов (1,1 -1,8 млрд. лет). Общая мощность всех этих отложений составляет 1-1,2 км, и все они, залегающие почти горизонтально, прорываются гранитами рапакиви (1,67 млрд. лет).

Рис. 4. Принципиальная схема соотношений главных комплексов докембрийских (дорифейских) образований на Балтийском щите (в Карелии):

1 - протоплатформенный комплекс (ятулий, суйсарий, велсий) PR 1 2 ; 2 - протоорогенный комплекс (сумий, сариолий) PR 1 1 ; 3 - протогеосинклинальный комплекс (лопий, суомий?) AR 1 2 ; 4 - комплекс основания (беломориды и более древние) AR 1 1

Таким образом, в Карелии устанавливается довольно определенная последовательность дорифейских комплексов пород (рис. 4). Комплекс основания представлен серыми гнейсами и ультраметаморфическими толщами беломорид (нижний архей). Выше располагается зеленокаменный протогеосинклинальный лопийский комплекс (верхний архей), который с несогласием перекрывается проторогенной толщей сумия - сариолия и протоплатформенными отложениями ятулия, суйсария и вепсия. Намечается картина, близкая к фанерозойским геосинклиналям, но очень сильно растянутая во времени.

Нижнепротерозойские образования на Кольском полуострове представлены имандра-варзугской и печенгской зеленокаменными метабазитовыми сериями с корой выветривания в основании, слагающими узкие (5-15 км) приразломные прогибы, заключенные между архейскими блоками на севере и на юге, хотя не исключено, что северный Мурманский блок является мощной (1 км) аллохтонной пластиной, надвинутой с севера на более молодые образования. Отложения были дислоцированы в конце раннего протерозоя.

На Украинском щите нижний протерозой - это знаменитая криворожская серия , образующая узкие, наложенные на архейские комплексы приразломные синклинории, шириной в 10-50 км. Криворожская серия подразделяется на нижнюю терригенную толщу

Рис. 5. Геологический профиль рудной полосы Яковлевского месторождения, Воронежская антеклиза (по С. И. Чайкину):

1 - аллиты и переотложенные руды; 2 - мартитовые и железнослюдковые руды; 3 - гидрогематит-мартитовые руды; 4 - железнослюдково-мартитовые кварциты; 5 - гидрогематит-мартитовые железистые кварциты с прослоями сланцев; 6 - конгломераты: 7 - филлиты подрудной сланцевой свиты; 8 - надрудные филлиты; 9 - филлиты тонкополосчатые; 10 - разломы

(кварцито-песчаники, конгломераты, филлиты, графитовые сланцы); среднюю - железорудную, состоящую из ритмично чередующихся джеспилитов и сланцев, напоминающих флиш; верхнюю - в основном терригенную (конгломераты, гравелиты, кварциты). Общая мощность серии до 7-8 км, ее отложения прорываются гранитами с возрастом 2,1-1,8 млрд. лет.

Аналогом описанных образований на Воронежской антеклизе являются отложения также трехчленной курской серии с железорудной толщей в средней части, образующей узкие синклинорные зоны, ориентированные в меридиональном направлении и хорошо прослеживающиеся в магнитном аномальном поле (рис. 5). На востоке Воронежской антеклизы залегают более молодые терригенные и метабазитовые отложения воронцовской и лосевской серий , в составе которых есть обломки джеспилитов и большое количество стратиформных интрузий гипербазитов (мамоновский комплекс), с медноникелево-сульфидным оруденением.

В Восточной и Северной Европе. Занимает большую часть Европейской территории России, территории Белоруссии, Украины, Латвии, Литвы, Эстонии, Молдавии, а также Финляндии, Швеции и Дании. Площадь около 5.5 млн. км 2 . На северо-востоке и востоке граничит с Южно-Баренцево-Тиманской и Уральской складчатыми системами, на юге - с Донецко-Каспийской складчатой зоной и Скифской молодой платформой, на юго-западе - со складчатой системой Карпат и Западно-Европейской молодой платформой, на северо-западе - со складчатыми структурами северо-западной части Скандинавского полуострова. Практически вдоль всего периметра складчатые сооружения надвинуты на платформу.

Восточно-Европейская платформа обладает архейско-раннепротерозойским фундаментом (возраст более 1.6 млрд. лет), сложенным интенсивно дислоцированными и метаморфизованными первично осадочными и вулканогенными породами, прорванными гранитами. Фундамент выступает на поверхность на северо-востоке и юго-западе в пределах Балтийского щита и Украинского щита (о его строении смотри в статье Украина), на остальной, большей по размерам территории, именуемой Русской плитой, он перекрыт чехлом горизонтально или полого-наклонно залегающих неметаморфизованных осадков рифея - фанерозоя. В пределах Русской плиты выделяют участки с глубоко погруженным фундаментом и мощностью платформенного чехла 3-5 км и более (синеклизы, или осадочные бассейны, в периферических частях платформы - перикратонные впадины), которые разделены поднятиями фундамента (антеклизами) с мощностью чехла от нескольких сотен метров до 2 км, протягивающимися к северу от Украинского щита. В области Белорусской и Воронежской антеклиз фундамент залегает на небольших глубинах; выходит на поверхность в карьерах Курской магнитной аномалии и в долине реки Дон. Большая часть Украинского щита и антеклиз в позднем протерозое - начале палеозоя входили в состав обширного выступа фундамента, называемого Сарматским щитом. Начиная с середины девона Сарматский щит испытывал дифференцированное погружение, особенно на северо-востоке, где сформировалась Волго-Уральская антеклиза, состоящая из нескольких сводов (Токмовского, Татарского, Сысольского, Коми-Пермяцкого, Башкирского, Жигулёвско-Пугачёвского, Оренбургского), разделённых седловинами и прогибами.

К северу от полосы поднятий фундамента расположены Балтийская, Московская и Мезенская синеклизы, на разных этапах формирования платформенного чехла входившие в состав вендско-раннепалеозойского Палеобалтийского, средне-позднедевонского Русско-Балтийского и позднепалеозойского Восточно-Русского бассейнов. По юго-западной и южной окраинам платформы протягиваются Польско-Литовская, Брестская, Львовская и Причерноморская перикратонные впадины. На юго-востоке Восточно-Европейской платформы находится сверхглубокая Прикаспийская синеклиза, испытывавшая погружение на протяжении всего фанерозоя; мощность платформенного чехла в её центральной части достигает 20-22 км. На Токмовский свод в юго-западной части Волго-Уральской антеклизы наложена наиболее молодая и мелкая Ульяновско-Саратовская синеклиза. В основании многих синеклиз расположены авлакогены (палеорифты), заполненные осадочными и вулканическими породами. Часть их имеет северо-западное простирание (Днепровско-Донецкий, Пачелмский, Камско-Бельский авлакогены), другие - северо-восточное (Волынский, Оршанский, Московский, авлакогены Среднерусской системы), некоторые простираются субмеридионально (Вятский, Доно-Медведицкий) или субширотно (Абдулинский). Авлакогены в основном имеют рифейский (1,6-0,6 миллиард лет), реже - среднепозднедевонский (390-360 миллионов лет) возраст. Крупнейшими девонскими палеорифтами являются Вятский и Днепровско-Донецкий с его северо-западным продолжением - Припятским палеорифтом. В основании Прикаспийской синеклизы, возможно, имеется крупный палеозойский палеорифт с разорванной или сильно утонённой (до 27-35 км) континентальной корой. Над Днепровско-Донецким авлакогеном в мезозое - кайнозое была сформирована Украинская синеклиза. В конце палеозоя, мезозое и кайнозое над некоторыми авлакогенами возникли валообразные структуры (над северной частью Пачелмского авлакогена - Окско-Цнинский вал, над Вятским - одноимённый вал, над Доно-Медведицким - цепочка валообразных поднятий), а также разрывные нарушения (сбросы, взбросонадвиги), флексуры.

В истории формирования платформенного чехла Восточно-Европейской платформы выделяют следующие этапы.

Рифей - ранний венд (1600-570 миллионов лет назад) - многофазное формирование систем палеорифтов с заполнением их осадками и вулканическим материалом (авлакогенный мегаэтап).

Поздний венд - ранний девон (570-392 миллионов лет назад) - накопление осадочного чехла в центральной, северо-восточной, западной и юго-восточной частях Восточно-Европейской платформы с преобладанием мелководно-морских отложений, максимальная трансгрессия (продвижение моря) отмечена в позднем венде - ордовике, максимальное осушение платформы - в раннем девоне.

Средний девон - пермь (392-251 миллионов лет назад) - этап начался с эпохи среднепозднедевонского рифтогенеза и щёлочно-базальтового вулканизма (в области Припятско-Днепровско-Донецкой палеорифтовой системы, Вятского палеорифта), на остальной территории платформы формировался осадочный чехол с преобладанием мелководно-морских отложений, максимальные трансгрессии имели место в среднем - позднем девоне (формирование Русско-Балтийского субширотного, разветвлённого на востоке бассейна) и карбоне (море продвигалось в основном с востока в пределы Восточно-Русского и Донецкого бассейнов), этап завершился регрессией (отступанием) моря в поздней перми.

Триас - эоцен (251-34 миллионов лет назад) - формирование осадочного чехла в основном в южной половине Восточно-Европейской платформы и в Московско-Мезенском бассейне, максимальные трансгрессии происходили в раннем триасе, в средней - поздней юре и в позднем мелу, максимальные осушения платформы имели место в конце триаса - начале юры, в раннем мелу. Олигоцен-четвертичное время (34 миллиона лет назад - доныне) - формирование осадочного чехла в основном вдоль южного края платформы. В четвертичном периоде северная половина Восточно-Европейской платформы неоднократно покрывалась ледниками, оставившими при отступании чехол ледниковых отложений.

Венд - фанерозой соответствует плитному мегаэтапу развития Восточно-Европейской платформы.

Магматизм на Восточно-Европейской платформе был проявлен в девоне в областях рифтогенеза, в позднем палеозое в северной части Балтийского щита (Хибинский и Ловозерский кольцевые массивы щелочных пород), а также на северном склоне Мезенской синеклизы (алмазоносные кимберлитовые трубки). Районы соляной тектоники - Прикаспийская и Украинская синеклизы.

На Восточно-Европейской платформе с породами фундамента связаны месторождения руд железа (Курская магнитная аномалия, Оленегорское, Ковдорское, Костомукшское - в России, Криворожский железорудный бассейн - в Украине, Кируна - в Швеции), меди и никеля (Печенгское - в России), а также слюды и керамического сырья (в Карелии, Россия). С магматическими породами эпохи позднепалеозойской активизации Восточно-Европейской платформы - месторождения апатита, нефелина, редкоземельных элементов (Хибинские месторождения в России), алмазов (Архангельский алмазоносный район в России). К осадочному чехлу приурочены крупные месторождения нефти и природного горючего газа (Волго-Уральская нефтегазоносная провинция и Прикаспийская нефтегазоносная провинция в России, Днепровско-Припятская газонефтеносная провинция в Белоруссии и в Украине), угля (Подмосковный угольный бассейн в России, Донецкий угольный бассейн, Днепровский и Львовско-Волынский бассейны в Украине), марганцевых руд (Никопольский марганцево-рудный бассейн в Украине), каменной и калийной солей (Верхнекамский соленосный бассейн в России, Прикаспийский калиеносный бассейн в России и в Казахстане, Припятский калиеносный бассейн в Белоруссии), бокситов (Тихвинское, Североонежское месторождения в России), фосфоритов (Вятско-Камское, Егорьевское месторождения в России), а также разнообразных природных строительных материалов (писчего мела, мергеля, известняков, доломитов, глин, песков и др.).

Лит.: Докембрий континентов. Древние платформы Евразии. Новосиб., 1977; Милановский Е. Е. Геология России и ближнего зарубежья (Северной Евразии). М., 1996; Хаин В. Е. Тектоника континентов и океанов (год 2000). М., 2001.

Восточно-Европейская эпикарельская платформа располагается в пределах Восточной, Северной и Центральной Европы. Ее площадь рав­на 5,5 млн км 2 . Рельеф Восточно-Европейской платформы почти целиком представлен одноименной равниной. Толь­ко на Кольском полуострове имеются горы с высотами до 1 км. Равнину эродируют реки, относящиеся к бассейнам Балтийского, Белого, Черного и Каспийского морей. Наиболее легко современная граница платформы прослеживается на востоке с герцинидами Урала, на западе с альпидами Карпат и на севере с каледонидами Норвегии. Также однозначно установлена граница платформы с байкалидами Тиманского поднятия. В других участках современная граница между добайкальскими и более поздними складчатыми системами пе­рекрыта осадочными породами чехла и проведена достаточно условно.

Фундамент платформы. В двух местах платформы зна­чительно эродированный кристаллический фундамент поднят до уровня дневной поверхности, образуя обширный Балтийский и небольшой Украинс­кий щиты. На остальной территории платформы, называемой Русской плитой, фундамент перекрыт осадочным чехлом. Фундамент Восточно-Европейской платформы сложен складчаты­ми сооружениями архейского и раннепротерозойского возраста: беломоридами и карелидами. Они образуют блоки, достаточно четко разли­чающиеся формой и расположением. Беломориды имеют многоуголь­ную форму и содержат овальные образования (нуклеарные ядра).

. Осадочные породы, перекрывающие кристаллический фундамент Восточно-Европейской платформы, имеют возраст от рифея до четвер­тичного. При этом весь разрез чехла крупными стратиграфическими перерывами делится на несколько этажей, которые имеют разное рас­пространение. Рассмотрим строение чехла поэтажно. Самый нижний первый этаж чехла сложен рифейскими и нижне­вендскими отложениями. Мощность их в среднем составляет 0,5-3 км. Эти отложения неметаморфизованы и имеют нарушен­ное залегание только в авлакогенах. Они сложены песчано-алеврито-глинистыми осадками кварцевого или аркозового состава. В небольшом количестве присутст­вуют также ледниковые и вулканогенные образования. Второй этаж чехла сложен непрерывным разрезом от верхнего венда до нижнего девона включительно. Нижние горизонты вто­рого этажа (венд и кембрий) представлены тонкообломочными осад­ками мелководных и прибрежных фаций. Это аргиллиты, глины, пес­чаники с некоторым количеством туфов и туффитов в венде. Выше по разрезу сложен карбонатами - доломи­тами, глинистыми известняками, мергелями. Обилие и разнообразие органических остатков в карбонатных осадках ордовика и силура. Нижний девон -это регрессивный комплекс, в котором мелковод­но-морские осадки сменяются пресноводными дельтово-континентальными. Общая мощность отло­жений второго этажа чехла колеблется от 200 м до 2 км. Третий этаж сложен отложениями девонско-триасового возраста.



Разрез начинается с верхов нижнего девона, который представлен континентальными, лагунными и морскими мелководными терригенными породами. Верхний девон представлен карбонатными отло­жениями. Также широко развиты соли, встречаются покровы базальтов трапповой формации. Каменноугольный разрез начинается карбонатной тол­щей, выше лежит угленосная толща, затем залегают красноцветные глинисто-алевритовые породы. Пермские отложения – это в основном лагунные и континента­льные образования. Нижние горизонты перми представлены карбонатными породами, выше они сменяются сульфатными и хлоридными осадками, а в верх­ней части главенствуют терригенные отложения.

Завершает разрез третьего этажа чехла триасовая система. Эти от­ложения представляют собой регрессивный комплекс континенталь­ных терригенных пород. Среди них отмечаются песча­ники, алевролиты, глины с прослоями каолинита, бурых железняков и сидеритовых конкреций.

Последний четвертый этаж чехла сложен юрско-кайнозойскими отложениями. Юрские представлены сероцветными мелководно-морскими и континентальными угленос­ными отложениями.

Для палеогена Русской плиты характерны два типа разрезов. В самой южной части плиты (Причерноморская и Прикаспийская области) разрез сложен мощными умеренно глубоководными глинисто-известковистыми отложениями. Более северный разрез представлен менее мощными мелководны­ми и континентальными отложениями: кварц-глауконитовыми песча­никами, глинами, кремнистыми осадками и бурыми углями. Неогеновые отложения Русской плиты характеризуются большой изменчивостью. Это извест­няки-ракушечники, глауконитовые пески, песчаники, доломиты, бурые угли, красноцветные глины. Четвертичные отложения покрывают большую часть поверхности Восточно-Европейской платформы чехлом мощностью от долей метра до нескольких сотен метров. Сложен моренными отложе­ниями, косослоистыми гру­бозернистыми песками и отложениями ледниковых, также распространены лессы.

Балтийский щит, Украинский щит, Южно-Балтийская моноклиналь, Причерноморская моноклиналь, Тимано-Печорская зона поднятий, Белорусская антеклиза, Волго-Уральская антеклиза, Воронежская антеклиза, Предуральский передовой прогиб, Прикарпатский прогиб, Рязано-Саратовский прогиб, Печорская синеклиза, Балтийская синеклиза, Украинская синеклиза, Прикаспийская синеклиза, Московская синеклиза.

Сибирская платформа

Сибирская платформа расположена в Центральной и Восточной Сибири. Поверхность Сибирской платформы в отличие от Восточно-Европейской почти целиком представляет собой денудационную возвышенность с высотами от 0,5 до 2,5 км. Поверхность платформы эродиро­вана реками, относящимися к бассейнам Карского моря и моря Лапте­вых. Восточная современная граница платформы прослеживается от устья Лены до Охотского моря сначала по Предверхоянскому крае­вому прогибому и затем по Нельканскому краевому шву. Этими структурами платформа отделяется от киммерид Верхояно-Чукотской области. Северная и западная границы перекрыты чехлом осадков Западно-Сибирской плиты, поэтому проведены условно по уступу ре­льефа в правобережье Енисея и Хатанги. Наиболее сложна южная граница платформы, так как она осложнена мезозойской тектоникой и разновозрастными гранитными интрузиями. Граница проходит от Удской губы вдоль южного склона Станового хребта до истоков Олекмы по Северо-Тукурингрскому разлому, который отделяет платформы от герцинид Монголо-Охотского пояса. Затем от Витима граница резко поворачивает на север, доходя практически до Лены, и опять на юг к юго-западному краю Байкала, огибая тем самым байкалиды Байкало-Патомского нагорья. Затем граница продолжается в северо-западном направлении до устья Подкаменной Тунгуски, оставляя с запада бай­калиды Восточных Саян и Енисейского кряжа.

Фундамент платформы . Фундамент Сибирской платформы сложен глубокометаморфизо-ванными архейскими и нижнепротерозойскими породами. Фундамент прерван многочисленными интрузиями палеозойского и мезозойского возраста. Представ­лен кварцитами, гнейсами и амфиболитами, на которых с несогласием залегают мра­моры и графитовые. Также присутствуют вулканогенно-осадочные образования мощностью 2-5 км, железисто-кремнистые формации, терригенные образования мощностью до 10 км, содержащие горизонт медис­тых песчаников.

Строение платформенного чехла . Типичный чехол начал формироваться на Сибирской платформе раньше, чем на Восточно-Европейской - уже в начале позднего про­терозоя. В разрезе чехла также выделяются несколько этажей, разде­ленных крупными стратиграфическими перерывами.

Нижний первый этаж чехла Сибирской платформы сложен рифейскими отложениями. Они залегают на нижнепротерозойских с региональным перерывом и угловым несогласием, приурочены как к авлакогенам, представлены терригенными песчано-гравийными отложениями. Выше по разрезу обло­мочные породы сменяются карбонатными. Второй этаж чехла сложен непрерывным разрезом от вендских до силурийских отложений. Основание разреза сложено терригенными породами, которые сменяются доломитами и известняками. Третий этаж чехла накапливался с конца среднего девона по триаса. Девонская часть разреза представлена морскими терригенно-карбонатными и континентальными красноцветными отложениями, а также вулканитами основного и щелочного состава. Также присутст­вуют соленосные толщи. Каменноугольная и пермская системы представлены терригенно-карбонатными морскими отложениями. На них залегают отло­жения среднего карбона и перми. Верхняя часть пермской системы состоит из терригенно-туфогенных образований.

Триасовая система представлена вулканогенными образованиями трапповой формации и связанными с ними многочисленными интрузи­ями основного состава. Это покровы базальтов мощностью от несколь­ких до ста метров с прослоями туфов, туффитов и осадочных пород. Четвертый этаж чехла представлен юрско-меловыми отложени­ями. Юрские отложения залегают трансгрессивно на породах с различ­ного возраста. Большей частью это сероцветные терригенные морские отложения, сменяющиеся в южном направлении континен-

тальными. Последние угленосны. Меловые отложения залегают соглас­но на юрских и представлены преимущественно континентальными угленосными толщами. Интрузивный магматизм мезозойского возраста широко распрост­ранен на юге платформы.Завершают разрез чехла Сибирской платформы кайнозойские отложения пятого этажа. Палеоген и неоген на подстилающих тол­щах залегают с размывом и представлены ограниченными по площади маломощными континентальными осадками. Они представлены кварцевыми и аркозовыми песками, косослоистыми песчаниками и глинами. Мощ­ность отложений достигает нескольких сотен метров.

Четвертичные отложения распространены повсеместно и представ­лены самыми разнообразными генетическими типами континенталь­ных пород.

Основные структурные элементы. Туруханская и Усть-Майская зоны поднятий, Алданский щит, Анабарская, Непско-Ботуобинская, Байкитская антеклизы, Тунгусская, Вилюйская, Хатангская синеклизы, Байкало-Патомский, Предверхоянский прогибы, Енисейская, Байкальская, Восточно-Саянская складчатые зоны.

31.Позднепалеозойский (герцинский) этап геологической истории Земли.

Поздний палеозой включает Д-ий, С-ый и Р-ий периоды, общей продолжительностью ок. 170 млн. лет

Органический мир и стратиграфия. Среди морских беспозвоночных ведущая роль принадлежала брахиоподам, головоногим моллюскам (гониатитам), кораллам и простей­шим. Встречаются морские лилии и морские ежи. К концу появляются цератиты. Из кораллов наиболее широ­ко распространены четырехлучевые, как колониальные, так и одиноч­ные формы, из простейших - фораминиферы. Наземные беспозвоночные позднего палеозоя представлены мно­гочисленными насекомыми. В девоне они еще бескрылые: скорпионы, пауки, тараканы. В каменноугольном периоде появляются гигантские стрекозы. Появление и развитие насекомых тесно связано с развитием наземной растительности. Исключительно активное накопление растительной биомассы способствовало с однойстороны образованию мощных залежей торфа, который в дальнейшем превратился в уголь, а с другой - увеличение содержания кислорода в атмосфере. Последнее, в свою очередь, привело к интенсификации процессов окисления, в связи с чем многие пермские отложения имеют бурую окраску. В С-завоевание суши растениями и появление первых земноводных. В середине девона на смену панцирным рыбам пришли костные рыбы. В Р появились первые пресмыкающиеся.

Состав и строение отложений. Основные структуры . Верхнепалеозойские отложения широко распространены как в пределах платформ и каледонских горно-складчатых сооружений, так и в пределах геосинклинальных поясов. Для позднепалеозойской се­диментации характерна большая доля континентальных отложений. Мощность верхнепалеозойских отложений на древних платформах в среднем составляет 2-4 км. Для эпох максимальных трансгрессий характерны кар­бонатные осадки (доломиты, известняки, рифтовые постройки), во время регрессий карбонаты сменялись терригенными осадками и эвапоритами. Общей чертой каменноугольных отложений является наличие в них большого количества углей и широкое их распростране­ние. Поэтому каменноугольный период можно назвать "первой эпо­хой угленакопления" в истории Земли. В отличие от раннего палеозоя, в позднем на древних платформах более активно проявлялись тектонические движения, которые приве­ли к формированию новых структур. Одной из таких структур являют­ся авлакогены. На Сибирской платформе повышенная тектони­ческая активность проявилась в виде траппового вулканизма, кото­рый начался в конце каменноугольного периода, а максимума достиг в конце перми - начале триаса. Горообразование сопровождалось большим количеством гранитоидных интрузий. На месте прогибов и разделяющих их поднятий возникают сложные горно-складчатые сооружения - герциниды.

История геологического развития . В результате герцинского тектонического этапа на рубеже палео­зоя и мезозоя произошла существенная перестройка в распределении континентов и океанов. Широкое распространение герцинид в преде­лах Урало-Монгольской и Средиземноморской областей свидетельст­вует о закрытии Палеоазиатского океана и западной части океана Тетис. В связи с этим эпикаледонские континенты вновь оказались сгруженными в единую континентальную глыбу - Пангею II, состоя­щую из двух частей. На юге это Гондвана, оставшаяся практически без изменений. На севере - новый материк Лавразия, объединяющий Се­веро-Атлантический материк, Сибирскую и Китайскую платформы.

Палеогеография и климат. Полезные ископаемые . В связи с эпохами трансгрессий и регрессий климат позднего пале­озоя довольно резко менялся. Наличие эвапоритов и красноцветов в отложениях раннего девона и перми указывает на существование в эти периоды жаркого и сухого климата. В позднем девоне и карбоне, наоборот, климат был влажным и мягким, о чем свидетельствует бур­ное развитие растительности. В каменноугольный период особенно ярко проявилась климатическая зональность позднего палеозоя, которая четко фиксируется по породам и ископаемым остаткам жи­вотных и, особенно, растений. Среди осадочных полезных ископаемых главную роль играют го­рючие - нефть, газ и каменный уголь. Нефтяные и газовые месторождения приурочены к морским толщам девона, карбона и перми. Около полови­ны всех запасов угля на Земле имеет позднепалеозойский возраст. Осадочные толщи верхнего палеозоя содержат железо (сидеритовые руды), фосфориты, медистые песчани­ки, бокситы, каменные и калийные соли, гипс и др. К инт­рузиям основного состава приурочены месторождения титаномагнетита, хромита, никеля, кобальта, асбеста. С вулканической деятельностью связаны колчеданно-полиметаллические месторожде­ния. К интрузиям кислого состава приурочены месторождения редких и цветных металлов: свинца, цинка, олова, ртути и т. д.

45.Условия накопления органического вещества и его преобразование в диагенезе.

Органическое вещество в земной коре – захороняемые остатки живых организмов в процессе осадконакопления.

Главный источник нефтяных УВ - это органические соединения, присутствующие в рассеянном состоянии в осадочных породах субаквального, в основном морского, происхождения. Но прежде чем эти соединения образуют скопления нефти и газа, они должны пройти сложный путь геохимических изменений вместе с вмеща­ющими их осадками, которые из отложившихся на морском дне высокообводненных илов превращаются в литифицированные оса­дочные породы.

В геохимической истории превращения 0В осадочных пород можно выделить два основных этапа: биохимическое преобразование ОВ, начинающееся при седиментогенезе и заканчивающееся на стадии диагенеза, и термокаталитическое преобразование 0В (стадия катагенеза), происходящее при погружении осадочных пород на глубину. Для каждой из этих стадий характерны свои действующие факторы и источники энергии.

Позднепалеозойская история Восточно-Европейской платформы существенно отличается от раннепалеозойской перестройкой и усложнением структуры платформы в целом. Если в раннем палеозое опусканиями были охвачены только северо-западная и западная части платформы, то в позднем палеозое началось погружение центральных и восточных районов.
Девонский период. Отложения девона имеют на платформе весьма широкое распространение, представлены всеми тремя отделами, однако площадь их развития весьма неодинакова. Наиболее распространены отложения среднего и особенно верхнего девона. Разрезы девона различных районов платформы существенно отличаются друг от друга как по составу, так и по мощности. На востоке, между Волгой и Уралом, а также в центральной части широко развиты морские карбонатные породы (рис. 91). На западе и северо-западе преобладают континентальные красноцветные и лагунные отложения с небольшими по мощности морскими прослоями. На большей части платформы девонские отложения залегают трансгрессивно на различных горизонтах нижнего палеозоя или прямо на кристаллических породах фундамента. II только на западе они постепенно сменяют силурийские отложения (Польско-Литовская синеклиза).
В начале девонского периода почти вся Восточно-Европейская платформа представляла собой обширный континент. Воздымание на-

Рис. 92. Схематическая литолого-палеогеографическая карта Восточно-Европейской платформы середины эйфельского века. По С. В. Тихомирову (1967 г.), с упрощением
1 - ^Сласть размыва; 2 - область накопления дельтовых осадков; 3-область накопления доломитовых осадков в морском бассейне с повышенной соленостью; 4 - гипс и ангидрит; 5 - галит и каменная соль; 6 - область накопления: карбонатных осадков в морском бассейне нормальной солености; 7-направление сноса обломочного материала; 8 - границы платформы;

  1. - границы областей с различными обстановками осадконакопления
чалоеь еще в конце силура и было отражением каледонских тектони- ческих движений, интенсивно проявившихся в соседнем Атлантическом геосинклннальном поясе. Только западные окраины платформы находились ниже уровня моря. Во второй половине раннего девона поднятие- усилилось и достигло максимума, на что указывает появление континентальных отложений там, где до этого существовал морской бассейн.
Отложения среднего и верхнего девона имеют более широкое распространение. С конца раннего девона начался новый этап в развитии Восточно-Европейской платформы, продолжавшийся до конца перми. Главной особенностью этого этапа было постепенное погружение платформы и, как следствие, трансгрессия моря. Погружение отдельных частей платформы происходило неодновременно. В конце раннего и начале среднего девона в опускание были вовлечены западные окраины и частично центральные районы, т. е. те участки, которые испытывали погружение и в раннем палеозое (унаследованное развитие) - см, рис. 92.

Перестройка структурного плаца произошла в конце эйфельского века (средний девон), когда началось опускание восточной части платформы и постепенное расширение морской трансгрессии с востока. Северо-западная часть платформы была вовлечена в поднятие, она превратилась в обширную аллювиальную прибрежно-морскую равнину - область континентального осадконакопления. Лишь в середине фран- ского века, когда морская трансгрессия достигла максимального значения, и эта часть платформы была вновь залита морем.
Другая отличительная особенность начальных стадий рассматриваемого этапа заключалась в том, что в ряде мест платформы опускание сопровождалось раскалыванием фундамента и возникновением вдоль разломов узких, но значительных по протяженности грабенообразных прогибов - авлакогенов. Ярким примером является Днепровско-Донецкий авлакоген, где в девонском периоде имела место вулканическая деятельность. Путями проникновения магмы основного состава служили глубинные разломы. По сравнению с другими частями платформы авлакоген испытывал более интенсивное прогибание.
В конце девонского периода платформа испытала кратковременное поднятие, морской бассейн сократился; его воды имели повышенную соленость (рис. 93), о чем свидетельствуют прослои доломитов, гипсов и ангидритов в верхней части разреза.
Каменноугольный период. Каменноугольные отложения на Восточно-Европейской платформе распространены меньше, чем девонские, они почти всюду построены по единому плану, хотя в некоторых частях платформы значительно изменяются как по составу, так и по мощности; на девонских породах залегают со следами размыва.
После поднятия в конце девона Восточно-Европейская платформа с начала каменноугольного периода стала погружаться и ее территория

Рис. 93. Схематическая литолого-палеогеографическая карта Восточно-Европейской платформы конца фаменского века. По С. В. Тихомирову (1967 г.), с упрощением
Условные обозначения см. рис. 92
была покрыта мелководным морским бассейном. Западная окраина этого бассейна, наиболее близкая к берегу, часто подвергалась осушению и здесь накапливался сносившийся с Балтийского щита терригенный материал. Наиболее интенсивно погружалась восточная часть платформы, примыкавшая к Урало-Монгольскому гео- синклинальному поясу.
В моменты осушения создавались условия для накопления угленосных отложений (начало внзейского века). Угли, залегающие среди песков и глин, образуют один или несколько быстро выклинивающихся пластов мощностью до 8 м. Угли бурые, низкого качества, они содержат много влаги (до 35%) и минеральных примесей (45%). Угли разрабатываются в Подмосковном угольном бассейне и используются как энергетическое топли
во. На северо-запад угленосная толща фациально замещается глинами с бокситами (г. Тихвин), а на восток - нефтеносными песками и глинами морского происхождения. Мощность угленосных отложений до 60 м.
Погружение платформы во второй половине визейского века привело к расширению трансгрессии моря с востока и накоплению карбонатных осадков. Морской бассейн отличался большой мелководностыо. временами возникали острова, поросшие деревьями. Увеличение мощности карбонатной толщи на востоке платформы указывает на более активное погружение ее восточной части по сравнению с западной.
Отложения среднего и верхнего карбона образуют единую толщу известняков и доломитов. В верхней части разреза появляются прослои гипса и ангидрита, а в основании залегают пески (часто нефтеносные) и красноцветные глины. Почти всюду (кроме восточных районов) средний карбон залегает с размывом и начинается с московского яруса. Мощность изменяется от 400 м (на западе) до 750 м (на востоке).
К началу среднего карбона почти вся платформа была поднята и подвергалась денудации. С началом опусканий в среднем карбоне морская трансгрессия вновь распространилась с востока и достигла максимума в московский век. Как и прежде, наибольшее погружение испытывала восточная часть платформы.
Таким образом, формирование отложений карбона на Восточно-Европейско» платформе происходило на фоне общего опускания, которое прерывалось двумя фазами кратковременных поднятий (в конце тур- нейского и в конце серпуховского веков). Эти поднятия привели к появлению размывов в толще осадков карбона. Устойчивое воздымание платформы началось в конце каменноугольного периода и завершилось в перми.
Существенно иными чертами развития в каменноугольном периоде характеризовался Днепровско-Донецкий авлакоген. Разрез каменноугольных отложений в Донецком бассейне состоит из двух неравных частей.
Нижняя часть, отвечающая турнейскому и большей части втейско- го яруса, представлена известняками мощностью 300-600 м. Выше, вплоть до границы с пермью, следует колоссальная по мощности угленосная серия, состоящая из песчаников, алевролитов аргиллитов с прослоями известняков и углей. Пласты угля обычно залегают среди аргиллитов и многие из них прослеживаются на значительное расстояние. В Донбассе известно до 300 пластов угля, из них около 60 рабочей мощности. Угли высококачественные паралические. Общая мощность угленосной серии в юго-восточной части бассейна достигает 18 000 м; резкое ее уменьшение отмечается с юга на север, менее резкое с востока на запад. Перечисленные выше породы угленосной серии неоднократно повторяются в разрезе, образуя ритмы, отделенные друг от друга следами размыва (рис. 94).
В начале каменноугольного периода процессы осадконакопления в Днепровско-Донецком авлакогене были такими же, как на остальной территории платформы. В конце раннего карбона наступил коренной перелом - началось усиленное прогибание земной коры и формирование мощной угленосной серии.
Пермский период. Пермские отложения на Восточно-Европейской платформе занимают обширные площади. На подстилающих породах залегают согласно (за редким исключением).

Рис. 94. Разрез девонских и каменноугольных отложений Донецкого бассейна (а) и одного ритма угленосной серии (б)

1 - угленосная серия; 2 - соленосные отложе- имя; 3 - вулканиты (лавы, туфы); 4 - конгломераты: 5 - песчаники; 6"- аргиллиты и алевролиты; 7 - известняки; в - угольны;* пласт
Рис. 95. Схематическая литолого-палеогео- графическая карта Восточно-Европейской платформы (казанский век)
Внутриматериковая аллювиальная равнина: 1 - красноцветные песчано-глинистые отложения, Г- галечники, 3 - угленосные отложения; облети морского осадконакопления: 4 - карбонатное
осадки; 5 - доломитово-карбонатные осадки, гипсы, ангидриты, б - каменная соль; 7 - і.і-." правление слоеа обломочного материала; 6 - с:-- ша, где осадконакопление не происходило

Осадконакопление в начале ранней перми происходило в мелководном, унаследованном от каменноугольного периода морском бассейне, занимавшем восточную часть платформы и Предуральский краевой прогиб. Сначала этот бассейн имел сообщение с Бореальным океаном и, очевидно, палео-Тетисом, что обуславливало нормальный солевой и соответствующий температурный режимы. В нем накапливались преимущественно карбонатные осадки.
В результате нараставшего поднятия, синхронного складкообразовательным движениям в Уральской геосинклиналькой системе, морской бассейн начал сокращаться, потерял связь с океаном и к концу* ранней перми превратился в огромную солеродную лагуну.
Отложения верхней перми по составу заметно отличаются от нижнепермских. Соленосные отложения постепенно сменяются конти- 224

дентальными красноцветными песчано-глинистыми, часто загипсованными. Характерны косослоистые песчаники, являющиеся аллювиальными и частично дельтовыми. Местами песчаники нефтеносны. Наряду с ними встречаются и карбонатные породы с пресноводной фауной. Это осадки опресненных озер.
В начале позднепермской эпохи платформа представляла собой аккумулятивную равнину. Огромные массы обломочного материала сносились водными потоками с горных цепей палео-Урала.
В середине позднепермской эпохи (казанский век) произошло погружение северной и восточной частей платформы, которое вызвало кратковременную, но обширную трансгрессию из арктического бассейна. Вновь возник огромный меридионально вытянутый морской залив с неустойчивым солевым режимом и довольно разнообразными условиями осадконакопления (рис. 95): в северной его части формировались карбонатные осадки, а в южной - галогенные. На северо-западе также произошли погружения, сюда проникли воды «цехштейнового» моря, занимавшего в это время значительные пространства Западной Европы.
В конце пермского периода вся Восточно-Европейская платформа вновь превратилась в сушу и представляла собой огромную аккумулятивную равнину. На востоке ее ограничивали горы палео-Урала, за счет разрушения которых формировались весьма разнообразные, быстро сменяющие друг друга красноцветные песчано-глинистые осадки (пролювиальные, речные, эоловые и озерные).
Позднепалеозойский этап развития Восточно-Европейской платформы закончился общим поднятием в конце пермского периода, достигшим максимального значения в триасе. Окончание этого этапа совпало с завершением герцинских складкообразовательных движений в Урало-Тяньшанской геосинклинальной области.