Конспект по географии на тему "современные космические методы исследования земли". Строение Земли, методы изучения внутреннего строения и гипотезы её происхождения

В XVIII и XIX веках для измерения Земли астрономы использовали точный метод триангуляции.

При этом непосредственное измерение больших длин на Земле заменяется определением углов в системе треугольников, разбиваемых на выпуклой земной поверхности. Сопоставление таких измеренных дуг, проведенных и вдоль меридианов и по долготе, через различные материки, позволило составить представление о форме и действительных размерах твердой оболочки Земли.

Земля оказалась отличной от шара; только в самом грубом приближении можно принимать ее за шар с радиусом 6371 км. В действительности она сплюснута у полюсов в соответствии с законами вращения тел и теорией тяготения Ньютона. Полярный радиус почти на 21 км короче экваториального радиуса. Поэтому во втором приближении Землю можно считать немного сплюснутой сферой, так называемым сфероидом, или эллипсоидом вращения. Элементы этого эллипсоида служат основой для построения точных карт земной поверхности.

Мы приведем данные об эллипсоиде, которые были установлены в 1940 г. советскими учеными: экваториальный радиус равен 6378 км, полярный радиус - 6356,9 км. Поэтому длина меридиана Земли, т. е. окружности, проходящей через полюсы, равна 40 010 км, а площадь всей поверхности составляет 510 млн. км 2 . Из них на сушу приходится только 29%; остальная часть, т. е. почти три четверти всей поверхности, составляет гигантская площадь океанов и морей.

Тем не менее реальная форма Земли отличается и от эллипсоида; материки несколько выступают над поверхностью океанов, а суши оказывается значительно больше в Северном полушарии Земли, нежели в Южном. Выяснение точной фигуры Земли представляет громадный интерес. Поэтому ученые продолжают точные измерения методами геодезии, определяя стороны и углы треугольников и строя геодезические знаки, которые располагаются в вершинах этих треугольников. Производится измерение силы тяжести во всех доступных точках Земли, для чего в последнее время используются чрезвычайно точные гравиметры. Полученные данные позволяют не только судить о неоднородностях в земной коре, залежах полезных ископаемых, но и исследовать форму Земли.

Масса Земли (количество ее вещества) составляет 6000 млрд. млрд. т. Деля массу на объем, мы получаем среднюю плотность земного вещества, которая оказывается в 5,5 раза больше, чем воды. А так как средняя плотность у поверхности всего лишь 2,6 по отношению к воде, вещество внутренних областей Земли должно быть очень сильно уплотнено и соответствовать плотности железа или стали.

В последнее время для изучения размеров и формы Земли стали использовать искусственные спутники. На основе законов небесной механики астрономы умеют определять точные орбиты спутников и путем непрерывных наблюдений следят за всеми изменениями в их движении. Поэтому всегда можно знать, где, когда и на какой высоте пролетает спутник. Точные измерения положения спутника на небе, произведенные из нескольких точек Земли, позволяют судить о положениях самих наблюдателей, т. е. позволяют проверять геодезические данные о земной поверхности. Результаты получаются в ряде случаев более точными, чем при геодезических определениях.

Метод наблюдений спутников особенно важен при выяснении вопроса: смещаются ли материки друг относительно друга? Правда ли, что американский континент отошел в давно прошедшие времена от западных границ Европы и Африки, как это предполагают некоторые ученые? Ведь, действительно, линия восточного побережья Америки хорошо соответствует очертаниям западных берегов Европы и Африки. Для выяснения этого вопроса нужно большое количество точных наблюдений. Пройдет некоторое время, и ученые смогут дать ответ на вопрос о движении материков.

Ракеты и спутники все шире используются также для непосредственного наблюдения Земли с большой высоты, из межпланетного пространства. Все. видели замечательные цветные фотографии земной поверхности, снятые Г. С. Титовым с корабля-спутника «Восток-2». Уже ведется постоянная метеорологическая служба со спутников, оборудованных телевизионными установками. По изображениям на экранах земных телевизоров можно следить за состоянием погоды в различных районах Земли, изучать движение циклонов.

Приборы, поднимаемые на спутниках, регистрируют состояние магнитного поля вокруг Земли, количество и особенности космических частиц, метеорные частицы, ультрафиолетовое и рентгеновское излучение и многое другое. Использование спутников позволило в 1958-1959 гг. открыть существование короны Земли - двух или даже трех поясов частиц высокой энергии - быстрых протонов и электронов, удерживаемых земным магнитным полем. Эти радиационные пояса играют, по-видимому, очень большую роль в различных атмосферных явлениях и в жизни на Земле.

При исследовании внутреннего строения нашей планеты чаще всего проводят визуальные наблюдения естественных и искусственных обнажений горных пород, бурение скважин и сейсмическую разведку.

Обнажение горных пород – это выход пород на земную поверхность в оврагах, долинах рек, карьерах, шахтных выработках, на склонах гор. Породы в обнажении обычно скрыты тонким слоем осыпи, поэтому прежде всего его очищают от лишнего материала. При изучении обнажения обращают внимание на то, какими породами оно сложено, каковы состав и мощность этих пород, порядок их залегания (рис. 2). Обнажение тщательно описывают, зарисовывают или фотографируют. Из каждого пласта берут пробы для дальнейшего изучения в лаборатории. Лабораторный анализ проб необходим для того, чтобы определить химический состав пород, их происхождение и возраст.

Бурение скважин позволяет глубже проникнуть в толщу Земли. При бурении извлекают образцы пород – керн. А затем на основании изучения керна определяют состав, строение, залегание пород и строят чертеж пробуренной толщи – геологический разрез местности. Сопоставление многих разрезов дает возможность установить, как залегают породы, и составить геологическую карту территории.

При изучении внутреннего строения Земли особенно велико значение глубоких и сверхглубоких скважин. Самая глубокая скважина находится на Кольском полуострове, где бур достиг отметки более 12 км.

Рисунок 2. Схема обнажения горизонтально залегающих горных пород, прорезанных вулканической жилой

Недостаток и наблюдения обнажений и буровых работ состоят в том, что они позволяют изучить только тонкую пленку земной поверхности. Так, глубина даже Кольской сверхглубокой скважины составляет менее 0,25 % радиуса Земли.

Сейсмический метод дает возможность «проникнуть» на большие глубины.

В основе этого метода лежит представление о том, что сейсмические волны (от греческого сейсмос – волна, колебание) в средах разной плотности распространяются с неодинаковой скоростью: чем плотнее среда, тем больше скорость. На границе двух сред часть волн отражается и подобно кругам на воде идет обратно, а другая – распространяется дальше.

Искусственно возбуждая волны на поверхности Земли путем взрывов, сейсмологи фиксируют время, за которое отраженные волны вернулись назад. Для этих целей применяется прибор-самописец – сейсмограф.

Различают два вида сейсмических волн – продольные и поперечные. Продольные распространяются во всех средах – твердых, жидких и газообразных, а поперечные – только в твердой среде.

Зная, с какой скоростью распространяются волны в песках, глинах, гранитах, базальтах и других породах, по времени их прохождения «туда и обратно» можно определить глубину залегания пород, различающихся по плотности.

Заключение

Развитию представлений о Земле способствовали великие географические открытия. Если астрономические знания давали сведения о форме и размерах Земли, то великие географические открытия позволяли проверить эти сведения, так сказать, на ощупь.

Накопление астрономических, географических и геологических знаний определило дальнейшее развитие представлений о внутреннем строении Земли. Мистические взгляды стали несовместимыми с данными науки. Представления о каналах и пустотах внутри Земли, определяющих ее строение, отходили на задний план: в дополнение к ним появилась идея о существовании внутри Земли центрального огня. В вопросе о причинах изменения рельефа Земли продолжалась борьба огня и воды - борьба сторонников ведущей роли каждого из этих факторов.

В начале XVIIIв появились идеи о твердом ядре(пассивном центральном огне). Многие считали, что Земля образовалась из огненного расплава и затем остывала с поверхности до центра. Ошибка многих авторов состояла в том, что они, будучи ограничены национальными рамками и понятиями, полученными в пределах одной страны, объясняли строение всего земного шара, исходя из строения гор в своем отечестве. Наряду с представлениями о твердых недрах Земли, во второй половине XVIIIв. существовали также представления о том, что на большой глубине внутри Земли находится огненно-жидкая материя, которая в отличие от пассивного центрального огня предыдущих исследователей активно воздействует на поверхность Земли.

В течение XIXв. господствующей идеей в представлениях о внутреннем строении Земли была идея о том, что весь земной шар наполнен бушующим морем огня, которое прикрывает лишь тонкая земная кора. Весь XIX в. выделен мною поэтому в особый период, несмотря на наличие других взглядов на строение Земли. Как я видела, развитие представлений о внутреннем строении Земли шло с середины XVIIв. таким образом: идея о пассивном центральном огне (до середины XVIIIв.) и идея развития Земли как планеты и активного воздействия ее недр на поверхность Земли (вторая половина XVIIIв.). Эти два направления как бы слились воедино в начале XIXв., когда господствующими стали представления об огненно-жидкой внутренности Земли, прикрытой тонкой земной корой, и об активном воздействии этого расплава на земную кору. Вместе с тем в начале XIXв., несмотря на господство идеи об огненном состоянии внутренности Земли, в таком вопросе, как причины землетрясений, еще существовала гипотеза более раннего периода о каналах и пустотах внутри Земли и о действии сжатых паров и газов, вызывающих землетрясения. Лишь с начала XIXв. в соответствии с общими представлениями причиной землетрясений стали считать воздымающее действие огненного расплава. Наряду с этим в XIXв. существовали и вполне оформившиеся идеи о твердом и даже железном ядре Земли.

Детальный анализ данных сейсмометрии и всех достижений сейсмологии был сделан в первой четверти XXв. Много различных высказываний о внутреннем строении Земли было в первую половину XXв. со стороны петрографов. Представления о пластическом или жидком подкоровом слое в первые десятилетия XXв. легли в основу многих вариантов гипотезы горизонтального перемещения материков. Учитывая успехи науки и техники в области космонавтики, глубоководного бурения, эксперимента при высоких температурах и давлениях, можно надеяться, что основные положения гипотезы могут быть проверены уже в ближайшем будущем.

Современный период характеризован развитием методов изучения внутреннего строения Земли.

Изложение предлагаемого материала базируется на структуре различных методов и принципов изучения стратиграфии и палеогеографии, предлагаемой исследователями в разных вариантах (Евдокимов, 1991; Гурский, 1979; Гурский и др., 1982, 1985; и др., таблица 1), в которой они группируются в соответствии с решаемыми задачами.

Основным методом является естественно-исторический, представляющий собой совокупность имеющихся современных методов, с помощью которых проводятся всесторонние исследования Земли, позволяющие выявлять состояние и процессы изменения географической оболочки во времени и пространстве для объяснения их сходства и различия, однотипные связи между компонентами природы, осуществлять сопоставления природных условий и создавать прогнозы их развития. В основе решения обозначенных проблем лежат три основные задачи:

1) изучение природной обстановки прошлого во времени и пространстве;

2) оценка состояния геосистем нынешнего этапа как результата пространственно-временного развития;

3) прогнозирование тенденций развития природной среды на основе их анализа в прошлом и настоящем.

Решение данных задач находит свое практическое применение в нескольких аспектах: геохронологии (установление возраста событий геологического прошлого), стратиграфии (расчленение толщ), палеогеографии (воссоздание условий накопления отложений и развития природных компонентов среды во времени и пространстве) и корреляции (сопоставление природных геологических событий как в пределах отдельных регионов, так и значительно удаленных друг от друга - дальние корреляции) и базируется ныне на принципах актуализма и историзма, возникших после зарождения униформизма и катастрофизма. При этом используются такие научные подходы, как статистический, руководящих форм, реликтов и экзотов, палеонтологических комплексов и эволюционный. Общими методами или методами синтеза научных исследований являются палеонтологические (биостратиграфические: флористические и фаунистические), непалеонтологические (геолого-стратиграфические или литогенетические) и физические. Получение фактического материала проводится на основе совокупного применения ряда частных методов и аналитических приемов. Частные методы дают первичную информацию, фактический материал, а общие методы - позволяют на их основе обрабатывать уже имеющуюся информацию.

Сбор и первичное изучение фактического материала осуществляется в полевых условиях на основе аэрофото- и геологической съемок, бурения скважин, описаний геологических объектов (естественных обнажений, выходов древних пород, продуктов вулканической деятельности, а также искусственных выработок - керна скважин, шурфов, шахт, карьеров), по записям и определениям каротажными станциями физических свойств горных пород в скважинах, отборам проб и органических остатков.

Последующая обработка пород проводится в лабораторных условиях и включает: техническую обработку образцов различными видами анализов и последующую микроскопию (в т.ч. фотографирование объектов), дешифрирование аэрофотоснимков и материалов каротажа.

Обобщение и анализ полученных данных проводится в камеральных условиях с использованием общенаучных методов (моделирования, системного, логического, сравнения и аналогов) и приемов (математического, компьютерного, табличного, а также графического в виде диаграмм, карт, профилей, перфокарт, схем, сейсмограмм и проч.) обработки полученной информации. Самая глубокая в мире Кольская скважина была заложена в 1970 г. и имеет проектную глубину 15 км. Начиная с 1961 г., американские геологи, используя специальное судно “Челенджер”, пробурили в разных частях ложа Мирового океана 600 скважин глубиной до 500-600 м. Советская автоматическая станция произвела бурение на Венере, а в 1976 г. буровое устройство АМС “Луна-24” прошло по лунным породам до глубины около 2 м, отобрало образцы, которые были доставлены на Землю и впоследствии изучены.

Любое историческое исследование, в том числе и историко-геологическое, направлено на рассмотрение событий во времени, что требует установления хронологии этих событий. Хронология - необходимая и неотъемлемая часть любых геологических и палеогеографических исследований. Она дает возможность расположить события прошлого в их естественной последовательности и установить их формальные хронологические отношения. Без хронологии не может быть истории (в т.ч. и геологической истории). Но хронология это еще не история. По утверждению И.Вальтера (1911), “только тогда хронология превращается в историю, когда единство великих событий от их начала до их конца находит себе выражение в их изложении”.

Чтобы ориентироваться в бесконечном множестве отдельных событий прошлого, необходимо установить не только их формальные хронологические отношения, но и их внутренние связи (хронологические и пространственные) друг с другом. Тем самым могут быть выявлены их естественные группировки, позволяющие наметить отвечающие последним этапы и рубежи геологического развития, составляющие основу естественной геологической периодизации.

Историческая последовательность геологических событий запечатлена в последовательности образования слагающих земную кору геологических единиц (пластов), изучением которых занимается стратиграфия.

Между геохронологией и стратиграфией существует тесная связь. Задача геохронологии заключается в установлении хронологии событий геологического прошлого Земли: ее возраста (изначального времени ее возникновения как планеты Солнечной системы - Протоземли; возраста горных пород, сформировавшихся в процессе эволюции Протоземли и слагающих земную кору; хронологической последовательности отрезков времени, в течение которых формировались толщи горных пород. Поскольку ни в одной точке Земли абсолютно полных геологических разрезов за всю историю планеты не существует в силу того, что периоды накопления (аккумуляции) осадков сменялись периодами разрушения и сноса (денудации) горных пород, многие страницы каменной летописи Земли оказываются вырванными и уничтоженными. Неполнота геологической летописи требует для восстановления истории Земли сопоставления геологических данных по большим территориям.

Все эти задачи решаются на основе рассматриваемых ниже методов относительной геохронологии. В результате разработаны геохронологическая (последовательный ряд геохронологических подразделений в их таксономической соподчиненности) и стратиграфическая (совокупность общих стратиграфических подразделений, расположенных в порядке их последовательности и таксономической подчиненности) шкалы с целым рядом соответствующих подразделений, основанных на эволюции органического мира. Стратиграфические подразделения применяются для обозначения комплексов слоев горных пород, а соответствующие им геохронологические подразделения - для обозначения времени, за которое эти комплексы отложились.

Говоря об относительном времени, используются геохронологические единицы, а говоря об отложениях, которые сформировались в определенное время, - стратиграфические единицы.

Расчленение и корреляцию разрезов производят на основе критериев, обусловленных минералого-петрографическими особенностями слоев, их взаимоотношениями и условиями накопления, или же составом остатков животных и растительных организмов, заключенных в породах. В соответствии с этим принято выделять методы, основанные на изучении состава слоев и их взаимоотношений (геолого-стратиграфические методы) и основанные на палеонтологической характеристике пород (биостратиграфические методы). Эти методы позволяют определить относительный возраст слоев горных пород и последовательность событий геологического прошлого (одни моложе или раньше, другие древнее или позже) и коррелировать одновозрастные слои и события.

Подобное определение относительного возраста горных пород не дает реального представления о геологическом возрасте Земли, о продолжительности событий геологического прошлого и продолжительности геохронологических подразделений. Относительная геохронология позволяет судить лишь о последовательности во времени отдельных геохронологических единиц и событий, но их истинную продолжительность (в тысячах и миллионах лет) можно установить геохронологическими методами, часто называемыми методами определения абсолютного возраста.

Таким образом, в географии и геологии существуют два летоисчисления: относительное и абсолютное. Относительное летоисчисление определяет возраст геологических объектов и событий относительно друг друга, последовательность их образования и протекания при помощи геолого-стратиграфических и биостратиграфических методов. Абсолютное летоисчисление устанавливает время возникновения горных пород, проявления геологических процессов и их продолжительность в астрономических единицах (годах) радиометрическими методами.

В связи с поставленными задачами частные географические и геологические методы объединяются в две крупные группы: абсолютной и относительной геохронологии.

Методами абсолютной (радиометрической, ядерной) геохронологии определяется количественно абсолютный (истинный) возраст геологических тел (пластов, слоев) со времени их образования. Эти методы имеют важное значение для датирования древнейших (включая докембрийские) толщ Земли, содержащие весьма скудные органические остатки.

Методами относительной (сравнительной) геохронологии можно получать представление об относительном возрасте горных пород, т.е. определять последовательность формирования геологических тел, соответствующих определенным геологическим событиям в истории Земли. Методы относительной геохронологии и стратиграфии позволяют ответить на вопрос, какие из сравниваемых отложений являются более древними и какие более молодыми без оценки длительности времени их образования и к какому временному интервалу относятся изучаемые отложения, соответствующие им геологические процессы, изменения климата, находки фауны, флоры и т.д.

В свое время я тоже заинтересовался тем, что находится у нас под ногами, и начал изучать ее подробнее. Проблема изучения внутреннего строения и состава нашей планеты с давних времен привлекала внимание ученых. Наиболее значимых результатов удалось добиться в XX веке, потому что по сложности и важности эта задача стоит в одном ряду с изучением космоса.

Методы изучения Земли

При изучении внутреннего строения Земли используются различные методы, которые можно объединить в две группы: методы прямого наблюдения и методы косвенного исследования. Первый тип – наиболее простой для понимания, ученые просто изучают горные породы, шахты и материалы, которые получают при бурении скважин. Интересно, что сегодня самые глубокие шахты достигают глубины 6 км, нефтяные скважины – 9 км. Отдельно стоит упомянуть об очень занимательной Кольской сверхглубокой скважине, расположенной на Кольском полуострове. Её глубина достигает 12,5 километров, что делает ее самой глубокой скважиной в мире. Она была создана специально для научно-исследовательской работы. Короче говоря, методом прямого наблюдения можно узнать о строении Земли до глубины около 20-ти километров.


Косвенные методы исследования

Другой, более сложный, тип методов исследования – косвенные методы. Они используются для изучения недр Земли, т.е. того, что находится ниже 20-ти км. Вот их перечень:

  • Сейсмический.
  • Гравиметрический.
  • Геомагнитный.
  • Геоэлектрический.

Самый важный из них – сейсмический, который использует сейсмические волны, они изменяют свою скорость распространения в зависимости от материала, через который они проходят. Этих волн существует два типа: продольные и поперечные.

Проще говоря, данный метод позволил определить границы, отделяющие разные оболочки Земли друг от друга, и установить то, в каком состоянии они находятся: вязком, жидком, твердом и т.д.


Итог

Сегодня мы знаем, что у Земли есть три оболочки: земная кора, мантия и ядро. Сейсмическая модель внутреннего строения Земли выглядит так, как показано на рисунке выше.

Для чего нужны современные методы изучения Земли?

Ответы:

Методы исследования в географии на сегодняшний день остаются все теми же, что и раньше. Однако это вовсе не означает, что они не претерпевают изменения. Появляются новейшие методы географических исследований, позволяющие значительно расширить возможности человечества и границы непознанного. Но прежде, чем рассмотреть эти новшества, необходимо разобраться в привычной классификации. Методы географических исследований - это различные способы получения информации в рамках науки географии. Они подразделяются на несколько групп. Итак, картографический метод представляется собой использование карт, как основного источника информации. Они могут дать представление не только о взаиморасположении объектов, но и их размерах, о степени распространения различный явлений и еще массу полезной информации. Статистический метод говорит о том, что нельзя рассматривать и изучать народы, страны, природные объекты без использования статистических данных. То есть очень важно знать какова глубина, высота, запасы природных ресурсов той или иной территории, ее площадь, численность населения отдельно взятой страны, ее демографические показатели, а также показатели производства. Исторический метод подразумевает, что наш мир развивался и все на планете имеет свою богатую историю. Таким образом, для того чтобы изучать современную географию, необходимо обладать знаниями об истории развития самой Земли и человечества, проживающего на ней. Методы географических исследований продолжает экономико-математический метод. Это не что иное, чем цифры: расчеты смертности, рождаемости, плотности населения, ресурсообеспе Сравнительно-географический метод помогает более полно оценить и описать различия и сходства географических объектов. Ведь все в этом мире подлежит сравнению: меньше или больше, медленнее или быстрее, ниже или выше и так далее. Этот метод позволяет составлять классификации географических объектов и прогнозировать их изменения. Методы географических исследований невозможно себе представить без наблюдений. Они могут быть непрерывными или периодическими, площадными и маршрутными, дистанционными или стационарными, тем менее все они предоставляют важнейшие данные о развитии географических объектах и тех изменениях, которые они претерпевают. Невозможно изучить географию, сидя за столом в кабинете или за школьной партой в классе, необходимо научиться извлекать полезную информацию из того, что можно увидеть собственными глазами. Одним из важных методов исследования географии был и остается метод географического районирования. Это выделение экономических и природных (физико-географических) районов. Не менее важен и метод географического моделирования. Всем нам еще со школьной скамьи известен самый яркий пример географической модели - глобус. Но моделирование может быть машинным, математическим и графическим. Географический прогноз - это умение предсказывать последствия, которые могут возникнуть вследствие развития человечества. Этот метод позволяет уменьшить негативное воздействие деятельности людей на окружающую среду, избежать нежелательных явлений, рационально использовать всевозможные ресурсы и так далее. Современные методы географических исследований явили миру ГИС - геоинформационные системы, то есть комплекс цифровых карт, привязанных к ним программных средств и статистики, которые дают людям возможность работать с картами прямо на компьютере. А благодаря сети Интернет появились системы подспутникового позиционирования, известные в народе, как GPS. Они состоят из наземных средств слежения, навигационных спутников и различных приборов, принимающих информацию и определяющих координаты. Все эти методы взаимосвязаны.Например невозможно изучить любую страну полностью,если исключить хотя бы один из этих методов Примеров много,зная методы можно и самой их составить...